Advertisement

Electron attachment to molecules in a cluster environment: suppression and enhancement effects

  • Ilya I. Fabrikant
Regular Article
  • 49 Downloads
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions

Abstract

Cluster environments can strongly influence dissociative electron attachment (DEA) processes. These effects are important in many applications, particularly for surface chemistry, radiation damage, and atmospheric physics. We review several mechanisms for DEA suppression and enhancement due to cluster environments, particularly due to microhydration. Long-range electron–molecule and electron–cluster interactions play often a significant role in these effects and can be analysed by using theoretical models. Nevertheless many observations remain unexplained due to complexity of the physics and chemistry of interaction of DEA fragments with the cluster environment.

Graphical abstract

References

  1. 1.
    R.D. Ramsier, J.T. Yates Jr., Surf. Sci. Rep. 12, 247 (1991) ADSCrossRefGoogle Scholar
  2. 2.
    T.D. Harris, D.H. Lee, M.Q. Blumberg, C.R. Arumainayagam, J. Phys. Chem. 99, 9530 (1995) CrossRefGoogle Scholar
  3. 3.
    L. Sanche, Radiat. Phys. Chem. 32, 269 (1988) ADSGoogle Scholar
  4. 4.
    L. Sanche, Eur. Phys. J. D 35, 367 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    A.V. Solov’yov, E. Surdutovich, E. Scifoni, I. Mishustin, W. Greiner, Phys. Rev. E 79, 011909 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    I.I. Fabrikant, S. Eden, N.J. Mason, J. Fedor, Adv. At. Mol. Opt. Phys. 66, 546 (2017) Google Scholar
  7. 7.
    J. Kohanoff, M. McAllister, G.A. Tribello, B. Gu, J. Phys.: Condens. Matter 29, 383001 (2017) ADSGoogle Scholar
  8. 8.
    Q.-B. Lu, Th.E. Madey, Phys. Rev. Lett. 82, 4122 (1999) ADSCrossRefGoogle Scholar
  9. 9.
    Q.-B. Lu, L. Sanche, Phys. Rev. Lett. 87, 078501 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    J. Nguyen, Y. Ma, R.G. Bristow, D.A. Jaffray, Q.-B. Lu, PNAS 108, 11778 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    Q.-B. Lu, L. Sanche, Phys. Rev. B 63, 153403 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    J.D. Gorfinkiel, S. Ptasinska, J. Phys. B: At. Mol. Opt. Phys. 50, 182001 (2017) ADSCrossRefGoogle Scholar
  13. 13.
    L. Sanche, A.D. Bass, P. Ayotte, I.I. Fabrikant, Phys. Rev. Lett. 75, 3568 (1995) ADSCrossRefGoogle Scholar
  14. 14.
    I.I. Fabrikant, K. Nagesha, R. Wilde, L. Sanche, Phys. Rev. B 56, R5725 (1997) ADSCrossRefGoogle Scholar
  15. 15.
    K. Nagesha, I.I. Fabrikant, L. Sanche, J. Chem. Phys. 114, 4934 (2001) ADSCrossRefGoogle Scholar
  16. 16.
    E. Leber, S. Barsotti, J. Bömmels, J.M. Weber, I.I. Fabrikant, M.-W. Ruf, H. Hotop, Chem. Phys. Lett. 325, 345 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    E. Leber, S. Barsotti, I.I. Fabrikant, J.M. Weber, M.-W. Ruf, H. Hotop, Eur. Phys. J. D 12, 125 (2000) ADSCrossRefGoogle Scholar
  18. 18.
    S. Barsotti, I.I. Fabrikant, M.-W. Ruf, H. Hotop, Int. J. Mass Spectrom. 365–366, 301 (2014) CrossRefGoogle Scholar
  19. 19.
    J.P. Gauyacq, A. Herzenberg, Phys. Rev. A 25, 2959 (1982) ADSCrossRefGoogle Scholar
  20. 20.
    H. Hotop, M.-W. Ruf, M. Allan, I.I. Fabrikant, Adv. At. Mol. Opt. Phys. 49, 85 (2003) ADSCrossRefGoogle Scholar
  21. 21.
    T.C. Freitas, M.A.P. Lima, S. Canuto, M.H.F. Bettega, Phys. Rev. A 80, 062710 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    T.C. Freitas, K. Coutinho, M. Varella, M.A.P. Lima, S. Canuto, M.H.F. Bettega, J. Chem. Phys. 138, 174307 (2013) ADSCrossRefGoogle Scholar
  23. 23.
    E.M. de Oliveira, T.C. Freitas, K. Coutinho, M.T. do N. Varella, S. Canuto, M.A.P. Lima, M.H.F. Bettega, J. Chem. Phys. 141, 051105 (2014) ADSCrossRefGoogle Scholar
  24. 24.
    A. Sieradzka, J.D. Gorfinkiel, J. Chem. Phys. 147, 034302 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    A. Sieradzka, J.D. Gorfinkiel, J. Chem. Phys. 147, 034303 (2017) ADSCrossRefGoogle Scholar
  26. 26.
    I.I. Fabrikant, S. Caprasecca, G.A. Gallup, J.D. Gorfinkiel, J. Chem. Phys. 136, 184301 (2012) ADSCrossRefGoogle Scholar
  27. 27.
    M. Smyth, J. Kohanoff, I.I. Fabrikant, J. Chem. Phys. 140, 184313 (2014) ADSCrossRefGoogle Scholar
  28. 28.
    I.I. Fabrikant, H. Hotop, Phys. Rev. A 63, 022706 (2001) ADSCrossRefGoogle Scholar
  29. 29.
    A. Schramm, I.I. Fabrikant, J.M. Weber, E. Leber, M.-W. Ruf, H. Hotop, J. Phys. B: At. Mol. Phys. 32, 2153 (1999) ADSCrossRefGoogle Scholar
  30. 30.
    R.S. Wilde, G.A. Gallup, I.I. Fabrikant, J. Phys. B: At. Mol. Phys. 33, 5479 (2000) ADSCrossRefGoogle Scholar
  31. 31.
    E.T. Jensen, L. Sanche, J. Chem. Phys. 129, 074703 (2008) ADSCrossRefGoogle Scholar
  32. 32.
    I.I. Fabrikant, J. Phys. B: At. Mol. Opt. Phys. 44, 225202 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    J. Lengyel, P. Papp, Š. Matejčík, J. Kočišek, M. Fárník, J. Fedor, Beilstein J. Nanotechnol. 8, 2200 (2017) CrossRefGoogle Scholar
  34. 34.
    J.P. Gauyacq, A. Herzenberg, J. Phys. B: At. Mol. Phys. 17, 1155 (1984) ADSCrossRefGoogle Scholar
  35. 35.
    I.I. Fabrikant, H. Hotop, M. Allan, Phys. Rev. A 71, 022712 (2005) ADSCrossRefGoogle Scholar
  36. 36.
    N.S. Shuman, T.M. Miller, J.F. Friedman, A.A. Viggiano, J. Phys. Chem. A 117, 1102 (2013) CrossRefGoogle Scholar
  37. 37.
    M. Allan, M. Lacko, P. Papp, Š. Matejčík, M. Zlatar, I.I. Fabrikant, J. Kočišek, J. Fedor, PCCP (2018), DOI: https://doi.org/10.1039/c8cp01387j
  38. 38.
    M. Michaud, P. Cloutier, L. Sanche, Phys. Rev. B 44, 10485 (1991) ADSCrossRefGoogle Scholar
  39. 39.
    I.I. Fabrikant, Phys. Rev. A 76, 012902 (2007) ADSCrossRefGoogle Scholar
  40. 40.
    P.J. Jennings, R.O. Jones, W. Weinert, Phys. Rev. B 37, 6113 (1988) ADSCrossRefGoogle Scholar
  41. 41.
    J. Kočišek, A. Pysanenko, M. Fárník, J. Fedor, J. Phys. Chem. Lett. 7, 3401 (2016) CrossRefGoogle Scholar
  42. 42.
    G.A. Gallup, Y. Xu, I.I. Fabrikant, Phys. Rev. A 57, 2596 (1998) ADSCrossRefGoogle Scholar
  43. 43.
    G.A. Gallup, I.I. Fabrikant, Phys. Rev. A 83, 012706 (2011) ADSCrossRefGoogle Scholar
  44. 44.
    I.I. Fabrikant, Sov. Phys. JETP 46, 693 (1977) ADSGoogle Scholar
  45. 45.
    E.P. Wigner, Phys. Rev. 73, 1002 (1948) ADSCrossRefGoogle Scholar
  46. 46.
    A. Kumar, M.D. Sevilla, J. Phys. Chem. B 111, 5464 (2007) CrossRefGoogle Scholar
  47. 47.
    A. Kumar, M. Sevilla, Chem. Phys. Chem. 10, 1426 (2009) CrossRefGoogle Scholar
  48. 48.
    H. Haberland, C. Ludewigt, H.-G. Schindler, D.R. Worsnop, J. Chem. Phys. 81, 3742 (1984) ADSCrossRefGoogle Scholar
  49. 49.
    J.M. Weber, E. Leber, M.-W. Ruf, H. Hotop, Eur. Phys. J. D 7, 587 (1999) ADSCrossRefGoogle Scholar
  50. 50.
    S. Denifl, F. Zappa, I. Maehr, J. Lecointre, M. Probst, T.D. Märk, P. Scheier, Phys. Rev. Lett. 97, 043201 (2006) ADSCrossRefGoogle Scholar
  51. 51.
    S. Denifl, F. Zappa, A. Mauracher, F. Ferreira da Silva, A. Bacher, O. Echt, T.D. Märk, D.K. Böhme, P. Scheier, Chem. Phys. Chem. 9, 1387 (2008) CrossRefGoogle Scholar
  52. 52.
    S. Denifl, Eur. Phys. J. Special Topics 222, 2017 (2013) ADSCrossRefGoogle Scholar
  53. 53.
    M. Neustetter, J. Aysina, F. Ferreira da Silva, S. Denifl, Angew. Chem. Int. Ed. 54, 9124 (2015) CrossRefGoogle Scholar
  54. 54.
    E.J. Al Maalouf, M. Neustetter, E. Illenberger, P. Scheier, S. Denifl, J. Phys. Chem. Lett. 8, 2220 (2017) CrossRefGoogle Scholar
  55. 55.
    J. Lengyel, J. Kočišek, M. Fárník, J. Fedor, J. Phys. Chem. C 120, 7397 (2016) CrossRefGoogle Scholar
  56. 56.
    J. Kočišek, K. Grygoryeva, J. Lengyel, M. Fárník, J. Fedor, Eur. Phys. J. D 70, 98 (2016) ADSCrossRefGoogle Scholar
  57. 57.
    J. Poštulka, P. Slavíček, J. Fedor, M. Fárník, J. Kočišek, J. Phys. Chem. B 121, 8965 (2017) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of NebraskaLincolnUSA

Personalised recommendations