Advertisement

Evolution of quantum steering in a Gaussian noisy channel

  • Tatiana Mihaescu
  • Aurelian Isar
Regular Article
  • 35 Downloads

Abstract

We describe the behaviour of the Gaussian quantum steering in a system of two bosonic modes evolving in a Gaussian noisy channel. The evolution based on completely positive quantum dynamical semigroups assures that the Gaussian form of the initial state of the subsystem is preserved in time. We study the quantum steering using the symplectic formalism and we find out that the steerability in the considered open system interacting with a squeezed thermal reservoir is destroyed by thermal noise and dissipation. The Gaussian quantum steerability manifests a sudden suppression, namely it decays at a finite moment of time. This behaviour is similar to the one of the quantum entanglement, compared to the Gaussian quantum discord, which is only asymptotically decreasing in time.

Graphical abstract

Keywords

Quantum Optics 

References

  1. 1.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000) Google Scholar
  2. 2.
    C. Weedbrook, S. Pirandola, R. Garcia-Patron, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Rev. Mod. Phys. 84, 621 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    G. Adesso, T.R. Bromley, M. Cianciaruso, J. Phys. A: Math. Theor. 49, 473001 (2016) ADSCrossRefGoogle Scholar
  4. 4.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    W.H. Zurek, Ann. Phys. 9, 853 (2000) CrossRefGoogle Scholar
  6. 6.
    H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    A. Einstein, B. Podolski, N. Rosen, Phys. Rev. 47, 777 (1935) ADSCrossRefGoogle Scholar
  8. 8.
    H.M. Wiseman, S.J. Jones, A.C. Doherty, Phys. Rev. Lett. 98, 140402 (2007) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Isar, Helv. Phys. Acta 67, 436 (1994) MathSciNetGoogle Scholar
  10. 10.
    A. Isar, A. Sandulescu, W. Scheid, Int. J. Mod. Phys. B 10, 2767 (1996) ADSCrossRefGoogle Scholar
  11. 11.
    A. Isar, Phys. Scripta 82, 038116 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    I. Ghiu, P. Marian, T.A. Marian, Phys. Scripta T 153, 014028 (2013) CrossRefGoogle Scholar
  13. 13.
    P. Marian, I. Ghiu, T.A. Marian, Phys. Rev. A 88, 012316 (2013) ADSCrossRefGoogle Scholar
  14. 14.
    P. Adam, V.A. Andreev, I. Ghiu, A. Isar, M.A. Man’ko, V.I. Man’ko, J. Russ. Laser Res. 35, 3 (2014) CrossRefGoogle Scholar
  15. 15.
    I. Ghiu, P. Marian, T.A. Marian, Phys. Scripta T 160, 014014 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    P. Marian, I. Ghiu, T.A. Marian, Phys. Scripta 90, 074041 (2015) ADSCrossRefGoogle Scholar
  17. 17.
    T. Mihaescu, A. Isar, Rom. J. Phys. 60, 853 (2015) Google Scholar
  18. 18.
    A. Isar, Open Syst. Inf. Dyn. 23, 1650007 (2016) MathSciNetCrossRefGoogle Scholar
  19. 19.
    S.L. Braunstein, P. van Loock, Rev. Mod. Phys. 77, 513 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    T. Mihaescu, A. Isar, Rom. J. Phys. 62, 107 (2017) Google Scholar
  21. 21.
    A. Isar, Phys. Scripta T 153, 014035 (2013) ADSCrossRefGoogle Scholar
  22. 22.
    A. Isar, T. Mihaescu, Eur. Phys. J. D 71, 144 (2017) ADSCrossRefGoogle Scholar
  23. 23.
    V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976) ADSCrossRefGoogle Scholar
  24. 24.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976) ADSCrossRefGoogle Scholar
  25. 25.
    A. Isar, A. Sandulescu, H. Scutaru, E. Stefanescu, W. Scheid, Int. J. Mod. Phys. E 3, 635 (1994) ADSCrossRefGoogle Scholar
  26. 26.
    A. Ferraro, S. Olivares, M.G.A. Paris, Gaussian States in Quantum Information (Bibliopolis, Napoli, 2005) Google Scholar
  27. 27.
    S. Olivares, Eur. Phys. J. Special Topics 203, 3 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    M.G.A. Paris, F. Illuminati, A. Serafini, S. de Siena, Phys. Rev. A 68, 012314 (2003) ADSCrossRefGoogle Scholar
  29. 29.
    A. Serafini, M.G.A. Paris, F. Illuminati, S. de Siena, J. Opt. B: Quantum Semiclass. Opt. 7, R19 (2005) ADSCrossRefGoogle Scholar
  30. 30.
    J. Fiurasek, Phys. Rev. Lett 89, 137904 (2002) ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    S.J. Jones, H.M. Wiseman, A.C. Doherty, Phys. Rev. A 76, 052116 (2007) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    I. Kogias, A.R. Lee, S. Ragy, G. Adesso, Phys. Rev. Lett. 114, 060403 (2015) ADSCrossRefGoogle Scholar
  33. 33.
    R. Simon, Phys. Rev. Lett. 84, 2726 (2000) ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    G. Adesso, A. Serafini, F. Illuminati, Phys. Rev. A 70, 022318 (2004) ADSCrossRefGoogle Scholar
  35. 35.
    I. Kogias, P. Skrzypczyk, D. Cavalcanti, A. Acin, G. Adesso, Phys. Rev. Lett. 115, 210401 (2015) ADSCrossRefGoogle Scholar
  36. 36.
    C. Branciard, E.G. Cavalcanti, S.P. Walborn, V. Scarani, H.M. Wiseman, Phys. Rev. A 85, 010301 (2012) ADSCrossRefGoogle Scholar
  37. 37.
    N. Walk, S. Hosseini, J. Geng, O. Thearle, J.Y. Haw, S. Armstrong, S.M. Assad, J. Janousek, T.C. Ralph, T. Symul, H.M. Wiseman, P.K. Lam, Optica 3, 634 (2016) CrossRefGoogle Scholar
  38. 38.
    Q. He, L. Rosales-Zarate, G. Adesso, M.D. Reid, Phys. Rev. Lett. 115, 180502 (2015) ADSCrossRefGoogle Scholar
  39. 39.
    P. Liuzzo-Scorpo, A. Mari, V. Giovannetti, G. Adesso, Phys. Rev. Lett. 119, 120503 (2017) ADSCrossRefGoogle Scholar
  40. 40.
    P. Liuzzo-Scorpo, G. Adesso, Proc. SPIE Opt. Photon. 10358, 103580V (2017) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsNational Institute of Physics and Nuclear EngineeringBucharest-MagureleRomania
  2. 2.Faculty of Physics, University of BucharestBucharest-MagureleRomania

Personalised recommendations