Advertisement

Formation of rubidium dimers on the surface of helium clusters: a first step through quantum molecular dynamics simulations

  • Alvaro Castillo-García
  • Tomás González-Lezana
  • Gerardo Delgado-Barrio
  • Pablo Villarreal
Regular Article
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions

Abstract

Starting with separated atoms on the surface of helium clusters 4HeN, and as a first step to assess the formation of rubidium dimers Rb2 in the triplet state, we perform Path Integral Molecular Dynamics simulations in the NVT canonical ensemble. Based on an accurate potential energy surface (PES) for the He–Rb2(3Σ u +) interaction [Guillon et al., J. Chem. Phys. 136, 174307 (2012)], the total PES is analytically described as the addition of pair interactions. The i-PI code [Ceriotti et al., Comput. Phys. Commun. 185, 1019 (2014)] was used to perform the simulations. At a temperature of 2 K, clusters containing up to N = 70 helium atoms, with a number up to 200 beads per particle to describe quantum effects, were considered.

Graphical abstract

References

  1. 1.
    J.P. Toennies, A. Vilesov, Annu. Rev. Phys. Chem. 49, 1 (1988) ADSCrossRefGoogle Scholar
  2. 2.
    S. Grebenev, J.P. Toennies, A.F. Vilesov, Science 279, 2083 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    J.P. Toennies, A.F. Vilesov, K.B. Whaley, Phys. Today 54, 31 (2001) Google Scholar
  4. 4.
    F. Stienkemeier, A.F. Vilesov, J. Chem. Phys. 115, 10119 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    J.P. Toennies, A.F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004) CrossRefGoogle Scholar
  6. 6.
    M.Y. Choi, G.E. Douberly, T.M. Falconer, W.K. Lewis, C.M. Lindsay, J.M. Merritt, P.L. Stiles, R.E. Miller, Int. Rev. Phys. Chem. 25, 15 (2006) CrossRefGoogle Scholar
  7. 7.
    F. Stienkemeier, K.K. Lehmann, J. Phys. B: At. Mol. Opt. Phys. 39, R127 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    S. Moroni, S. Baroni, Comput. Phys. Commun. 169, 404 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    F. Paesani, F.A. Gianturco, K.B. Whaley, J. Chem. Phys. 115, 10225 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    S. Goyal, D.L. Schutt, G. Scoles, Phys. Rev. Lett. 69, 933 (1992) ADSCrossRefGoogle Scholar
  11. 11.
    D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995) ADSCrossRefGoogle Scholar
  12. 12.
    A. Hernando, M. Barranco, R. Mayol, M. Pi, F. Ancilotto, O. Bünermann, F. Stienkemeier, J. Low Temp. Phys. 158, 105 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    O. Allard, J. Nagl, G. Auböck, C. Callegari, W.E. Ernst, J. Phys. B 39, s1169 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    J. Higgins, C. Callegari, J. Reho, F. Stienkemeier, W.E. Ernst, M. Gutowski, G. Scoles, J. Phys. Chem. A 102, 4952 (1998) CrossRefGoogle Scholar
  15. 15.
    P. Class, G. Droppelmann, C.P. Schulz, M. Mudrich, F. Stienkemeier, J. Phys. Chem. A 111, 7537 (2007) CrossRefGoogle Scholar
  16. 16.
    G. Auböck, M. Aymar, O. Dulieu, W.E. Ernst, J. Chem. Phys. 132, 054304 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    M. Schlesinger, M. Mudrich, F. Stienkemeier, W.T. Strunz, Chem. Phys. Lett. 490, 245 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    G. Auböck, J. Nagl, C. Callegari, W.E. Ernst, J. Phys. Chem. A 111, 7404 (2007) CrossRefGoogle Scholar
  19. 19.
    R. Krems, B. Friedrich, W. Stwalley, Cold molecules: theory, experiment, applications (CRC Press, Boca Raton, FL, 2009) Google Scholar
  20. 20.
    A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, P. Pillet, Phys. Rev. Lett. 80, 4402 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    K.M. Jones, E. Tiesinga, P.D. Lett, P.S. Julienne, Rev. Mod. Phys. 78, 483 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    E.A. Donley, N.R. Claussen, S.T. Thompson, C.E. Wieman, Nature 417, 529 (2002) ADSCrossRefGoogle Scholar
  23. 23.
    T. Köhler, K. Góral, P.S. Julienne, Rev. Mod. Phys. 78, 1311 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, M. Weidemüller, Phys. Rev. Lett. 101, 133004 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    F. Lang, K. Winkler, C. Strauss, R. Grimm, J. Hecker Denschlag, Phys. Rev. Lett. 101, 133005 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    G. Quemener, P.S. Julienne, Chem. Rev. 112, 4949 (2012) CrossRefGoogle Scholar
  27. 27.
    G. Krois, J.V. Pototschnig, F. Lackner, W.E. Ernst, J. Phys. Chem. A 117, 13719 (2013) CrossRefGoogle Scholar
  28. 28.
    T. Chen, S. Zhu, X. Li, J. Qian, Y. Wang, Phys. Rev. A 89, 063402 (2014) ADSCrossRefGoogle Scholar
  29. 29.
    F.R. Brühl, R.A. Miron, W.E. Ernst, J. Chem. Phys. 115, 10275 (2001) ADSCrossRefGoogle Scholar
  30. 30.
    M. Theisen, F. Lackner, W. Ernst, J. Phys. Chem. A 115, 7005 (2011) CrossRefGoogle Scholar
  31. 31.
    L. Fechner, B. Gruner, A. Sieg, C. Callegari, F. Ancilotto, F. Stienkemeier, M. Mudrich, Phys. Chem. Chem. Phys. 14, 3843 (2012) CrossRefGoogle Scholar
  32. 32.
    J. von Vangerow, A. Sieg, F. Stienkemeier, M. Mudrich, A. Leal, D. Mateo, A. Hernando, M. Barranco, M. Pi, J. Phys. Chem. A 118, 6604 (2014) CrossRefGoogle Scholar
  33. 33.
    F. Stienkemeier, J. Higgins, W.E. Ernst, G. Scoles, Phys. Rev. Lett. 74, 3592 (1995) ADSCrossRefGoogle Scholar
  34. 34.
    W.E. Ernst, R. Huber, S. Jiang, R. Beuc, M. Movre, G. Pichler, J. Chem. Phys. 124, 024313 (2006) ADSCrossRefGoogle Scholar
  35. 35.
    R. Rodríguez-Cantano, T. González-Lezana, R. Prosmiti, G. Delgado-Barrio, P. Villarreal, J. Jellinek, J. Chem. Phys. 142, 164304 (2015) ADSCrossRefGoogle Scholar
  36. 36.
    G. Guillon, A. Viel, J.M. Launay, J. Chem. Phys. 136, 174307 (2012) ADSCrossRefGoogle Scholar
  37. 37.
    R. Rodríguez-Cantano, T. González-Lezana, P. Villarreal, Int. Rev. Phys. Chem. 35, 37 (2016) CrossRefGoogle Scholar
  38. 38.
    R. Pérez de Tudela, D. López-Durán, T. González Lezana, G. Delgado-Barrio, P. Villarreal, F.A. Gianturco, E. Yurtsever, J. Phys. Chem. A 115, 6892 (2011) CrossRefGoogle Scholar
  39. 39.
    R. Rodríguez-Cantano, D. López-Durán, R. Pérez de Tudela, T. González-Lezana, G. Delgado-Barrio, P. Villarreal, F.A. Gianturco, Comp. Theor. Chem. 990, 106 (2012) CrossRefGoogle Scholar
  40. 40.
    R. Rodríguez-Cantano, R. Pérez de Tudela, D. López-Durán, T. González-Lezana, F.A. Gianturco, G. Delgado-Barrio, P. Villarreal, Eur. Phys. J. D 67, 119 (2013) ADSCrossRefGoogle Scholar
  41. 41.
    R.A. Aziz, M.J. Slaman, J. Chem. Phys. 94, 8047 (1991) ADSCrossRefGoogle Scholar
  42. 42.
    T.S. Ho, H. Rabitz, J. Chem. Phys. 104, 2584 (1996) ADSCrossRefGoogle Scholar
  43. 43.
    M. Ceriotti, M. Parrinello, T.E. Markland, D.E. Manolopoulos, J. Chem. Phys. 133, 124104 (2010) ADSCrossRefGoogle Scholar
  44. 44.
    S. Habershon, D.E. Manolopoulos, T.E. Markland, T.F. Miller, Annu. Rev. Phys. Chem. 64, 387 (2013) ADSCrossRefGoogle Scholar
  45. 45.
    M. Ceriotti, J. More, D.E. Manolopoulos, Comput. Phys. Commun. 185, 1019 (2014) ADSCrossRefGoogle Scholar
  46. 46.
    G. Bussi, M. Parrinello, Phys. Rev. E 75, 056707 (2007) ADSCrossRefGoogle Scholar
  47. 47.
    R.E. Zillich, K.B. Whaley, J. Phys. Chem. A 111, 7489 (2007) CrossRefGoogle Scholar
  48. 48.
    J. Boronat, K. Sakkos, E. Sola, J. Casulleras, J. Low Temp. Phys. 148, 845 (2007) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, IFF-CSICMadridSpain

Personalised recommendations