Advertisement

Improving fidelity of quantum secret sharing in noisy environments

  • Chen-Ming Bai
  • Zhi-Hui Li
  • Yong-Ming Li
Regular Article

Abstract

Quantum secret sharing is a procedure for sharing a secret among a number of participants such that only certain subsets of participants can collaboratively reconstruct it. In this paper, we review a quantum secret sharing scheme to realize a class of access structures. Based on this protocol, we give a concrete example with three participants. Since the noisy channel has a great influence on the shared quantum secret, we analyze the impacts of two kinds of noisy channels on quantum secret sharing and obtain the expression among the fidelity, noisy coefficient and shared quantum state coefficients. In order to enhance the fidelity of the shared secret, we give an optimized strategy through the concrete scheme. Furthermore, we analyze two specific cases, and we can enhance the fidelity through properly adjusting the compensation parameters. Compared with the original way, our method shows an effective influence on the quality decrease of quantum secret sharing schemes due to the entanglement decoherence.

Graphical abstract

Keywords

Quantum Information 

References

  1. 1.
    A. Shamir, Commun. ACM 22, 612 (1979) CrossRefGoogle Scholar
  2. 2.
    G.R. Blakley, in Proceedings of the National Computer Conference (AFIPS, 1979), pp. 313–317 Google Scholar
  3. 3.
    M. Hillery, V. Buzek, A. Berthiaume, Phys. Rev. A 59, 1829 (1999) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Cleve, D. Gottesman, H.K. Lo, Phys. Rev. Lett. 83, 648 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    D. Gottesman, Phys. Rev. A 61, 042311 (2000) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    A.M. Lance, T. Symul, W.P. Bowen, B.C. Sanders, P.K. Lam, Phys. Rev. Lett. 92, 177903 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    F.G. Deng, H.Y. Zhou, G.L. Long, J. Phys. A: Math. Gen. 39, 14089 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    W.K. Wootters, W.H. Zurek, Nature 299, 802 (1982) ADSCrossRefGoogle Scholar
  9. 9.
    D. Dieks, Phys. Lett. A 92, 271 (1982) ADSCrossRefGoogle Scholar
  10. 10.
    A. Karlsson, M. Koashi, N. Imoto, Phys. Rev. A 59, 162 (1999) ADSCrossRefGoogle Scholar
  11. 11.
    A. Tavakoli, I. Herbauts, M. Zukowski, M. Bourennane, Phys. Rev. A 92, 030302 (2015) ADSCrossRefGoogle Scholar
  12. 12.
    V. Karimipour, M. Asoudeh, Phys. Rev. A 92, 030301 (2015) ADSCrossRefGoogle Scholar
  13. 13.
    S. Lin et al., Phys. Rev. A 93, 062343 (2016) ADSCrossRefGoogle Scholar
  14. 14.
    K.J. Zhang et al., Sci. China Phys. Mech. Astron. 6, 1 (2016) Google Scholar
  15. 15.
    G. Gordon, G. Rigolin, Phys. Rev. A 73, 062316 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    H.D. Massoud, F. Elham, Sci. China Phys. Mech. Astron. 55, 1828 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    A. Maitra, S.J. De, G. Paul, A.K. Pal, Phys. Rev. A 92, 022305 (2015) ADSCrossRefGoogle Scholar
  18. 18.
    P. Sarvepalli, R. Raussendorf, Phys. Rev. A 81, 052333 (2010) ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    R.H. Shi, L.S. Huang, W. Yang, H. Zhong, Sci. China Phys. Mech. Astron. 53, 2238 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    C.M. Bai et al., Eur. Phys. J. D 71, 255 (2017) ADSCrossRefGoogle Scholar
  21. 21.
    Z. Zhang, W. Liu, C. Li, Chin. Phys. B 20, 050309 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    R. Rahaman, M.G. Parker, Phys. Rev. A 91, 022330 (2015) ADSCrossRefGoogle Scholar
  23. 23.
    Y.H. Yang et al., Sci. Rep. 5, 16967 (2015) ADSCrossRefGoogle Scholar
  24. 24.
    C.M. Bai et al., Quantum Inf. Process. 16, 59 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    J. Wang, L. Li, H. Peng, Y. Yang, Phys. Rev. A 95, 022320 (2017) ADSCrossRefGoogle Scholar
  26. 26.
    H. Lu et al., Phys. Rev. Lett. 117, 030501 (2016) ADSCrossRefGoogle Scholar
  27. 27.
    S. Adhikari, arXiv:1011.2868 (2010)
  28. 28.
    M. Ray, S. Chatterjee, I. Chakrabarty, Eur. Phys. J. D 70, 114 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    M. Asoudeh, V. Karimipour, arXiv:1709.09327 (2017)
  30. 30.
    C.M. Bai et al., Int. J. Theor. Phys. 55, 4972 (2016) CrossRefGoogle Scholar
  31. 31.
    M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2000) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mathematics and Information Science, Shaanxi Normal UniversityXi’anP.R. China
  2. 2.College of Computer Science, Shaanxi Normal UniversityXi’anP.R. China

Personalised recommendations