Advertisement

Transport of secondary electrons through coatings of ion-irradiated metallic nanoparticles

  • Kaspar Haume
  • Pablo de Vera
  • Alexey Verkhovtsev
  • Eugene Surdutovich
  • Nigel J. Mason
  • Andrey V. Solov’yov
Regular Article
  • 47 Downloads
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions

Abstract

The transport of low-energy electrons through the coating of a radiosensitizing metallic nanoparticle under fast ion irradiation is analyzed theoretically and numerically. As a case study, we consider a poly(ethylene glycol)-coated gold nanoparticle of diameter 1.6 nm excited by a carbon ion in the Bragg peak region in water as well as by more energetic carbon ions. The diffusion equation for low-energy electrons emitted from a finite-size spherical source representing the surface of the metal core is solved to obtain the electron number density as a function of radial distance and time. Information on the atomistic structure and composition of the coating is obtained from molecular dynamics simulations performed with the MBN Explorer software package. Two mechanisms of low-energy electron production by the metallic core are considered: the relaxation of plasmon excitations and collective excitations of valence d electrons in individual atoms of gold. Diffusion coefficients and characteristic lifetimes of electrons propagating in gold, water, and poly(ethylene glycol) are obtained from relativistic partial wave analysis and the dielectric formalism, respectively. On this basis, the number of electrons released through the organic coating into the surrounding aqueous medium and the number of hydroxyl radicals produced are evaluated. The largest increase of the radical yield due to low-energy electrons is observed when the nanoparticle is excited by an ion with energy significantly exceeding that in the Bragg peak region. It is also shown that the water content of the coating, especially near the surface of the metal core, is crucial for the production of hydroxyl radicals.

Graphical abstract

References

  1. 1.
    D. Kwatra, A. Venugopal, S. Anant, Transl. Cancer Res. 2, 330 (2013) Google Scholar
  2. 2.
    J.W.J. Bergs, M.G. Wacker, S. Hehlgans, A. Piiper, G. Multhoff, C. Rödel, F. Rödel, Biochim. Biophys. Acta 1856, 130 (2015) Google Scholar
  3. 3.
    M. Yamada, M. Foote, T.W. Prow, WIREs: Nanomed. Nanobiotechnol. 7, 428 (2015) Google Scholar
  4. 4.
    K. Haume, S. Rosa, S. Grellet, M.A. Śmiałek, K.T. Butterworth, A.V. Solov’yov, K.M. Prise, J. Golding, N.J. Mason, Cancer Nanotechnol. 7, 8 (2016) CrossRefGoogle Scholar
  5. 5.
    J.F. Hainfeld, D.N. Slatkin, H.M. Smilowitz, Phys. Med. Biol. 49, N309 (2004) CrossRefGoogle Scholar
  6. 6.
    J.C. Polf, L.F. Bronk, W.H.P. Driessen, W. Arap, R. Pasqualini, M. Gillin, Appl. Phys. Lett. 98, 193702 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    S.J. McMahon et al., Sci. Rep. 1, 18 (2011) CrossRefGoogle Scholar
  8. 8.
    E. Porcel, S. Liehn, H. Remita, N. Usami, K. Kobayashi, Y. Furusawa, C. Le Sech, S. Lacombe, Nanotechnology 21, 085103 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    E. Porcel, S. Li, N. Usami, H. Remita, Y. Furusawa, K. Kobayashi, C. Le Sech, S. Lacombe, J. Phys: Conf. Ser. 373, 012006 (2010) Google Scholar
  10. 10.
    F. Xiao, Y. Zheng, P. Cloutier, Y. He, D. Hunting, L. Sanche, Nanotechnology 22, 465101 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    T. Schlathölter et al., Int. J. Nanomedicine 11, 1549 (2016) CrossRefGoogle Scholar
  12. 12.
    E. Porcel, O. Tillement, F. Lux, P. Mowat, N. Usami, K. Kobayashi, Y. Furusawa, C. Le Sech, S. Li, S. Lacombe, Nanomedicine: Nanotechnol. Biol. Med. 10, 1601 (2014) Google Scholar
  13. 13.
    S. Li et al., Nanotechnology 27, 455101 (2016) ADSCrossRefGoogle Scholar
  14. 14.
    A.V. Solov’yov (ed.), Nanoscale Insights into Ion-Beam Cancer Therapy (Springer International Publishing, Cham, Switzerland, 2017) Google Scholar
  15. 15.
    E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 68, 353 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    L. Sanche, Eur. Phys. J. D 35, 367 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    E. Alizadeh, T.M. Orlando, L. Sanche, Annu. Rev. Phys. Chem. 66, 379 (2015) ADSCrossRefGoogle Scholar
  18. 18.
    C. Sicard-Roselli, E. Brun, M. Gilles, G. Baldacchino, C. Kelsey, H.N. McQuaid, C. Polin, N. Wardlow, F.J. Currell, Small 10, 3338 (2014) CrossRefGoogle Scholar
  19. 19.
    S. Rosa, C. Connolly, G. Schettino, K.T. Butterworth, K.M. Prise, Cancer Nanotechnol. 8, 2 (2017) CrossRefGoogle Scholar
  20. 20.
    K. McNamara, S.A.M. Tofail, Adv. Phys. X 2, 54 (2017) Google Scholar
  21. 21.
    S. Klein, A. Sommer, L.V.R. Distel, J.L. Hazemann, W. Kröner, W. Neuhuber, P. Müller, O. Proux, C. Kryschi, J. Phys. Chem. B 118, 6159 (2014) CrossRefGoogle Scholar
  22. 22.
    I. Martínez-Rovira, Y. Prezado, Med. Phys. 42, 6703 (2015) CrossRefGoogle Scholar
  23. 23.
    Y. Lin, S.J. McMahon, M. Scarpelli, H. Paganetti, J. Schuemann, Phys. Med. Biol. 59, 7675 (2014) CrossRefGoogle Scholar
  24. 24.
    S.J. McMahon, H. Paganetti, K.M. Prise, Nanoscale 8, 581 (2016) ADSCrossRefGoogle Scholar
  25. 25.
    H.N. Tran et al., Nucl. Instrum. Meth. B 373, 126 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    S. Heredia-Avalos, I. Abril, C.D. Denton, J.C. Moreno-Marín, R. Garcia-Molina, J. Phys: Condens. Matter 19, 466205 (2007) Google Scholar
  27. 27.
    M. Gilles, E. Brun, C. Sicard-Roselli, Colloid. Surf. B 123, 770 (2014) CrossRefGoogle Scholar
  28. 28.
    A. Verkhovtsev, E. Surdutovich, A.V. Solov’yov, Sci. Rep. 6, 27654 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    K. Haume, N.J. Mason, A.V. Solov’yov, Eur. Phys. J. D 70, 181 (2016) ADSCrossRefGoogle Scholar
  30. 30.
    A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Phys. Rev. Lett. 114, 063401 (2015) ADSCrossRefGoogle Scholar
  31. 31.
    A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, J. Phys. Chem. C 119, 11000 (2015) CrossRefGoogle Scholar
  32. 32.
    A.V. Solov’yov, Int. J. Mod. Phys. B 19, 4143 (2005) ADSCrossRefGoogle Scholar
  33. 33.
    L.G. Gerchikov, A.V. Solov’yov, J.P. Connerade, W. Greiner, J. Phys. B: At. Mol. Opt. Phys. 30, 4133 (1997) ADSCrossRefGoogle Scholar
  34. 34.
    E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 69, 193 (2015) ADSCrossRefGoogle Scholar
  35. 35.
    I. Abril, R. Garcia-Molina, C.D. Denton, F. Pérez-Pérez, N. Arista, Phys. Rev. A 58, 357 (1998) ADSCrossRefGoogle Scholar
  36. 36.
    S. Heredia-Avalos, R. Garcia-Molina, J.M. Fernández-Varea, I. Abril, Phys. Rev. A 72, 052902 (2005) ADSCrossRefGoogle Scholar
  37. 37.
    I. Abril, R. Garcia-Molina, P. de Vera, I. Kyriakou, D. Emfietzoglou, Adv. Quant. Chem. 65, 129 (2013) CrossRefGoogle Scholar
  38. 38.
    P. de Vera, R. Garcia-Molina, I. Abril, A.V. Solov’yov, Phys. Rev. Lett. 110, 148104 (2013) ADSCrossRefGoogle Scholar
  39. 39.
    F. Salvat, Phys. Rev. A 68, 012708 (2003) ADSCrossRefGoogle Scholar
  40. 40.
    F. Salvat, A. Jablonski, C. Powell, Comput. Phys. Commun. 165, 157 (2005) ADSCrossRefGoogle Scholar
  41. 41.
    P. de Vera, E. Surdutovich, N.J. Mason, A.V. Solov’yov, Eur. Phys. J. D 71, 281 (2017) ADSCrossRefGoogle Scholar
  42. 42.
    I.A. Solov’yov, A.V. Yakubovich, P.V. Nikolaev, I. Volkovets, A.V. Solov’yov, J. Comput. Chem. 33, 2412 (2012) CrossRefGoogle Scholar
  43. 43.
    I.A. Solov’yov, A.V. Korol, A.V. Solov’yov, Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer (Springer International Publishing, Cham, Switzerland, 2017) Google Scholar
  44. 44.
    I.A. Solov’yov, G.B. Sushko, A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, MBN Explorer and MBN Studio Tutorials. Version 3.0 (MesoBioNano Science Publishing, 2017) Google Scholar
  45. 45.
    D. Emfietzoglou, F.A. Cucinotta, H. Nikjoo, Radiat. Res. 164, 202 (2005) ADSCrossRefGoogle Scholar
  46. 46.
    S. Incerti et al., Med. Phys. 37, 4692 (2010) CrossRefGoogle Scholar
  47. 47.
    F. Blanco, A. Muñoz, D. Almeida, F. Ferreira da Silva, P. Limão-Vieira, M.C. Fuss, A.G. Sanz, G. García, Eur. Phys. J. D 67, 199 (2013) ADSCrossRefGoogle Scholar
  48. 48.
    I. Kyriakou, S. Incerti, Z. Francis, Med. Phys. 42, 3870 (2015) CrossRefGoogle Scholar
  49. 49.
    M. Dingfelder, A. Travia, R.A. Mclawhorn, J.L. Shinpaugh, L.H. Toburen, Radiat. Phys. Chem. 77, 1213 (2008) ADSCrossRefGoogle Scholar
  50. 50.
    Y. Itikawa, N. Mason, J. Phys. Chem. Ref. Data 34, 1 (2005) ADSCrossRefGoogle Scholar
  51. 51.
    J. Lindhard, K. Dan, Vidensk. Selsk. Mat. Fys. Medd. 28, 1 (1954) Google Scholar
  52. 52.
    R.H. Ritchie, A. Howie, Philos. Mag. 36, 463 (1977) ADSCrossRefGoogle Scholar
  53. 53.
    J.M. Fernández-Varea, R. Mayol, D. Liljequist, F. Salvat, J. Phys: Condens. Matter 5, 3593 (1993) ADSGoogle Scholar
  54. 54.
    P. de Vera, I. Abril, R. Garcia-Molina, J. Appl. Phys. 109, 094901 (2011) ADSCrossRefGoogle Scholar
  55. 55.
    R. Garcia-Molina, I. Abril, I. Kyriakou, D. Emfietzoglou, Surf. Interface Anal. 49, 11 (2017) CrossRefGoogle Scholar
  56. 56.
    R. Garcia-Molina, I. Abril, I. Kyriakou, D. Emfietzoglou, in Radiation Damage in Biomolecular Systems, edited by G. García Gómez-Tejedor, M.C. Fuss (Springer Science+Business Media B.V, Dordrecht, 2012), chap. 15 Google Scholar
  57. 57.
    P. de Vera, R. Garcia-Molina, I. Abril, Phys. Rev. Lett. 114, 018101 (2015) ADSCrossRefGoogle Scholar
  58. 58.
    Z. Tan, Y. Xia, M. Zhao, X. Liu, F. Li, B. Huang, Y. Ji, Nucl. Instrum. Methods Phys. Res. B 222, 27 (2004) ADSCrossRefGoogle Scholar
  59. 59.
    H. Hayashi, N. Watanabe, Y. Udagawa, C. Kao, Proc. Natl. Acad. Sci. USA 97, 6264 (2000) ADSCrossRefGoogle Scholar
  60. 60.
    E.D. Palik, G. Ghosh, The Electronic Handbook of Optical Constants of Solids (Academic Press, San Diego, 1999) Google Scholar
  61. 61.
    M. Michaud, A. Wen, L. Sanche, Radiat. Res. 159, 3 (2003) ADSCrossRefGoogle Scholar
  62. 62.
    S.M. Sze, J.L. Moll, T. Sugano, Solid-State Electron. 7, 509 (1964) ADSCrossRefGoogle Scholar
  63. 63.
    I. Lindau, P. Pianetta, K.Y. Yu, W.E. Spicer, J. ElectronSpectrosc. Relat. Phenom. 8, 487 (1976) CrossRefGoogle Scholar
  64. 64.
    H. Kanter, Phys. Rev. B 1, 522 (1970) ADSCrossRefGoogle Scholar
  65. 65.
    G. Gergely, M. Menyhard, S. Gurban, J. Toth, D. Varga, Surf. Interface Anal. 36, 1098 (2004) CrossRefGoogle Scholar
  66. 66.
    R. Garcia-Molina, I. Abril, C.D. Denton, S. Heredia-Avalos, I. Kyriakou, D. Emfietzoglou, Nucl. Instrum. Methods Phys. Res. B 267, 2647 (2009) ADSCrossRefGoogle Scholar
  67. 67.
    ICRU, Report 55–Secondary electron spectra from charged particle interactions (International Commission on Radiation Units and Measurements, Bethesda, Maryland, 1996) Google Scholar
  68. 68.
    C.D. Denton, I. Abril, R. Garcia-Molina, J.C. Moreno-Marín, S. Heredia-Avalos, Surf. Interf. Anal. 40, 1481 (2008) CrossRefGoogle Scholar
  69. 69.
    D. Liljequist, Radiat. Phys. Chem. 77, 835 (2008) ADSCrossRefGoogle Scholar
  70. 70.
    A. Jablonski, J. Phys. Chem. Ref. Data 33, 409 (2004) ADSCrossRefGoogle Scholar
  71. 71.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995) Google Scholar
  72. 72.
    J.P. Connerade, A.V. Solov’yov, Phys. Rev. A 66, 013207 (2002) ADSCrossRefGoogle Scholar
  73. 73.
    A. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Eur. Phys. J. D 66, 253 (2012) ADSCrossRefGoogle Scholar
  74. 74.
    L.G. Gerchikov, A.N. Ipatov, R.G. Polozkov, A.V. Solov’yov, Phys. Rev. A 62, 043201 (2000) ADSCrossRefGoogle Scholar
  75. 75.
    C. Yannouleas, R.A. Broglia, Ann. Phys. 217, 105 (1992) ADSCrossRefGoogle Scholar
  76. 76.
    B. Assadollahzadeh, P. Schwerdtfeger, J. Chem. Phys. 131, 064306 (2009) ADSCrossRefGoogle Scholar
  77. 77.
    H. Nikjoo, S. Uehara, D. Emfietzoglou, F. Cucinotta, Radiat. Meas. 41, 1052 (2006) CrossRefGoogle Scholar
  78. 78.
    M.S. Kreipl, W. Friedland, H.G. Paretzke, Radiat. Environ. Biophys. 48, 11 (2009) CrossRefGoogle Scholar
  79. 79.
    J. Fedor et al., J. Phys. B: At. Mol. Opt. Phys. 39, 3935 (2006) ADSCrossRefGoogle Scholar
  80. 80.
    L. Lacombe, P.M. Dinh, P.G. Reinhard, E. Suraud, L. Sanche, Eur. Phys. J. D 69, 195 (2015) ADSCrossRefGoogle Scholar
  81. 81.
    J. Meesungnoen, J.P. Jay-Gerin, A. Filali-Mouhim, S. Mankhetkorn, Radiat. Res. 158, 657 (2002) ADSCrossRefGoogle Scholar
  82. 82.
    P. Pianetta, in X-Ray Data Booklet (Lawrence Berkeley National Laboratory, University of California, Berkley, California, 2009), Sect. 3.2 Google Scholar
  83. 83.
    J. Abate, P.P. Valkó, Int. J. Numer. Meth. Eng. 60, 979 (2004) CrossRefGoogle Scholar
  84. 84.
    P. de Vera, Ph.D. thesis, University of Alicante, 2016 Google Scholar
  85. 85.
    P. de Vera, I. Abril, R. Garcia-Molina, A.V. Solov’yov, J. Phys: Conf. Ser. 438, 012015 (2013) Google Scholar
  86. 86.
    I. Abril, C.D. Denton, P. de Vera, I. Kyriakou, D. Emfietzoglou, R. Garcia-Molina, Nucl. Instrum. Meth. B 268, 1763 (2010) ADSCrossRefGoogle Scholar
  87. 87.
    C.T. Chantler, J.D. Bourke, J. Phys: Condens. Matter 27, 455901 (2015) ADSGoogle Scholar
  88. 88.
    J.C. Ashley, C.J. Tung, R.H. Ritchie, Surf. Sci. 81, 409 (1979) ADSCrossRefGoogle Scholar
  89. 89.
    C.J. Tung, Y.F. Chen, C.M. Kwei, T.L. Chou, Phys. Rev. B 49, 16684 (1994) ADSCrossRefGoogle Scholar
  90. 90.
    C. Tung, T. Chao, H. Hsieh, W. Chan, Nucl. Instrum. Meth. B 262, 231 (2007) ADSCrossRefGoogle Scholar
  91. 91.
    R.H. Ritchie, C.J. Tung, V.E. Anderson, J.C. Ashley, Radiat. Res. 64, 181 (1975) ADSCrossRefGoogle Scholar
  92. 92.
    G. Holtkamp, K. Jost, F.J. Peitzmann, J. Kessler, J. Phys. B: At. Mol. Opt. Phys. 20, 4543 (1987) ADSCrossRefGoogle Scholar
  93. 93.
    R. Panajotovic, V. Pejcev, M. Konstantinovic, D. Filipovic, V. Bocvarski, B. Marinkovic, J. Phys. B: At. Mol. Opt. Phys. 26, 1005 (1993) ADSCrossRefGoogle Scholar
  94. 94.
    H. Cho, Y.S. Park, H. Tanaka, S.J. Buckman, J. Phys. B: At. Mol. Opt. Phys. 37, 625 (2004) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physical Sciences, The Open UniversityMilton KeynesUK
  2. 2.MBN Research CenterFrankfurt am MainGermany
  3. 3.School of Mathematics and Physics, Queen’s University BelfastBelfastUK
  4. 4.Instituto de Física Fundamental, CSICMadridSpain
  5. 5.Department of PhysicsOakland UniversityRochesterUSA

Personalised recommendations