Advertisement

Critical free electron densities and temperatures for spectral lines in dense plasmas

  • Xiangfu Li
  • Xugen Zheng
  • Ping Deng
  • Gang Jiang
Regular Article
  • 22 Downloads

Abstract

The ionization potentials of bound electrons decrease when an atom is immersed in plasma. The calculation or measurement of the ionization potential depression (IPD) is used to estimate the influence of the plasma environments on atomic structures. This work reports a simple method for the estimation of the effects of IPD on H- and He-like ions in dense plasmas. The method predicts the critical free electron densities and temperatures after which spectral lines of H- and He-like ions disappear. The critical free electron density and temperature are the free electron density and temperature that correspond to the classical turning point radius of a bound electron in the highest occupied orbital of the two atomic states for a transition that is equal to the ion-sphere radius. The obtained critical free electron densities are in better agreement with the ORION experimental results than those obtain using other available theories. The present method may thus provide a more accurate estimation of the effects of IPD in dense plasmas and may be extended to other multi-electron ions such as Li- and Be-like ions.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    S.K. Son, R. Thiele, Z. Jurek, B. Ziaja, R. Santra, Phys. Rev. X 4, 031004 (2014) Google Scholar
  2. 2.
    E.I. Moses, R.N. Boyd, B.A. Remington, C.J. Keane, R. Al-Ayat, Phys. Plasmas 16, 041006 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    P. Emma et al., Nat. Photonics 4, 641 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    K.L. Ishikawa, K. Ueda, Phys. Rev. Lett. 108, 033003 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    S.X. Hu, Phys. Rev. Lett. 119, 065001 (2017) ADSCrossRefGoogle Scholar
  6. 6.
    S.M. Vinko et al., Nature 482, 59 (2012) ADSCrossRefGoogle Scholar
  7. 7.
    O. Ciricosta et al., Phys. Rev. Lett. 109, 065002 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    D.J. Hoarty et al., Phys. Rev. Lett. 110, 265003 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    J.C. Stewart Jr., K.D. Pyatt, Astrophys. J. 144, 1203 (1966) ADSCrossRefGoogle Scholar
  10. 10.
    G. Ecker, W. Kröll, Phys. Fluids 6, 62 (1963) ADSCrossRefGoogle Scholar
  11. 11.
    O. Ciricosta et al., Nat. Commun. 7, 11713 (2016) ADSCrossRefGoogle Scholar
  12. 12.
    C.A. Iglesias, P.A. Sterne, High Energy Density Phys. 9, 103 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    C.A. Iglesias, High Energy Density Physics 12, 5 (2014) ADSCrossRefGoogle Scholar
  14. 14.
    A. Calisti, S. Ferri, B. Talin, J. Phys. B: At. Mol. Opt. Phys. 48, 224003 (2015) ADSCrossRefGoogle Scholar
  15. 15.
    T.R. Preston, S.M. Vinko, O. Ciricosta, H.K. Chung, R.W. Lee, J.S. Wark, High Energy Density Physics 9, 258 (2013) ADSCrossRefGoogle Scholar
  16. 16.
    S. Bhattacharyya, J.K. Saha, T.K. Mukherjee, Phys. Rev. A 91, 042515 (2015) ADSCrossRefGoogle Scholar
  17. 17.
    B.J. Crowley, High Energy Density Phys. 13, 84 (2014) ADSCrossRefGoogle Scholar
  18. 18.
    S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982) ADSCrossRefGoogle Scholar
  19. 19.
    I.P. Grant, Comput. Phys. Commun. 84, 59 (1994) ADSCrossRefGoogle Scholar
  20. 20.
    X. Li, Z. Xu, F.B. Rosmej, J. Phys. B: At. Mol. Opt. Phys. 39, 3373 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    Y. Li, J.H. Wu, Y. Hou, J.M. Yuan, J. Phys. B: At. Mol. Opt. Phys. 41, 145002 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    J. Yuan, Phys. Rev. E 66, 047401 (2002) ADSCrossRefGoogle Scholar
  23. 23.
    P. Jönsson, G. Gaigalas, J. Bieron, C. Froese Fischer, I.P. Grant, Comput. Phys. Commun. 184, 2197 (2013) ADSCrossRefGoogle Scholar
  24. 24.
    P. Jönsson, X. He, C. Froese Fischer, I.P. Grant, Comput. Phys. Commun. 177, 597 (2007) ADSCrossRefGoogle Scholar
  25. 25.
  26. 26.
    A.N. Sil, J. Anton, S. Fritzsche, P.K. Mukherjee, Eur. Phys. J. D 55, 645 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    M. Das, B.K. Sahoo, S. Pal, Phy. Rev. A 93, 052513 (2016) ADSCrossRefGoogle Scholar
  28. 28.
    D. Salzmann, H. Szichman, Phys. Rev. A 35, 807 (1987) ADSCrossRefGoogle Scholar
  29. 29.
    B. Saha, S. Fritzsche, J. Phys. B: At. Mol. Opt. Phys. 40, 259 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    Y. Li, J. Wu, Y. Hou, J. Yuan, J. Phys. B: At. Mol. Opt. Phys. 42, 235701 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    G. Massacriert, J. Dubau, J. Phys. B: At. Mol. Opt. Phys. 23, 24598 (1990) Google Scholar
  32. 32.
    M. Belkhiri, C.J. Fontes, J. Phys. B: At. Mol. Opt. Phys. 49, 175002 (2016) ADSCrossRefGoogle Scholar
  33. 33.
    M. Belkhiri, M. Poirier, High Energy Density Phys. 9, 609 (2013) ADSCrossRefGoogle Scholar
  34. 34.
    B.J. Crowley, Phy. Rev. A 41, 2179 (1990) ADSCrossRefGoogle Scholar
  35. 35.
    X.F. Li, G. Jiang, H.B. Wang, Q. Sun, Phys. Scr. 92, 075401 (2017) ADSCrossRefGoogle Scholar
  36. 36.
    X.F. Li, G. Jiang, H.B. Wang, Q. Sun, Chin. Phys. B 26, 013101 (2017) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiangfu Li
    • 1
    • 2
  • Xugen Zheng
    • 1
  • Ping Deng
    • 1
  • Gang Jiang
    • 1
    • 3
  1. 1.Institute of Atomic and Molecular Physics, Sichuan UniversityChengduP.R. China
  2. 2.College of Electrical Engineering, Longdong UniversityQingyangP.R. China
  3. 3.Key Laboratory of High Energy Density Physics and Technology, Ministry of EducationChengduP.R. China

Personalised recommendations