Skip to main content
Log in

Strong decay modes of warm space-charge waves in thermal plasma waveguides

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The strong collisional decay modes of warm space-charge waves are derived in a thermal plasma waveguide composed of warm collisional electrons and cold ions. The kinetic theory is applied to obtain the dispersion relation of the space-charge wave. In addition, the analytic expressions of the real part and the damping rate of the wave frequency are obtained for a plasma waveguide including the influence of collision and geometric configuration. It is found that the space-charge wave has the strong decay mode in small wave numbers. In these decay modes, the damping rate increases with an increase of the collision frequency and decreases with an increase of the order of the root of the Bessel function. It is found that the damping rate of the space-charge wave increases with an increase of the radius of the plasma waveguide. It is also found that the space-charge wave is always highly damped in the propagation domain. In addition, the influence of geometric configuration on the damping rate is found to be much significant in high-harmonic cases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.M. Gradov, L. Stenflo, Phys. Rep. 94, 111 (1983)

    Article  ADS  Google Scholar 

  2. A.F. Alexandrov, L.S. Bogdankevich, A.A. Rukhadze, Principles of Plasma Electrodynamics (Springer, Berlin, 1984)

  3. O.M. Gradov, L. Stenflo, Phys. Fluids B 3, 3201 (1991)

    Article  ADS  Google Scholar 

  4. L. Stenflo, M.Y. Yu, Phys. Plasmas 2, 1494 (1995)

    Article  ADS  Google Scholar 

  5. L. Stenflo, Phys. Scr. T 63, 59 (1996)

    Article  ADS  Google Scholar 

  6. L. Stenflo, M.Y. Yu, Phys. Plasmas 5, 3122 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  7. H.S. Hong, H.J. Lee, Phys. Plasmas 6, 3422 (1999)

    Article  ADS  Google Scholar 

  8. Yu.M. Aliev, H. Schlüter, A. Shivarova, Guided-Wave-Produced Plasmas (Springer, Berlin, 2000)

  9. L. Stenflo, P.K. Shukla, M.Y. Yu, Phys. Plasmas 7, 2731 (2000)

    Article  ADS  Google Scholar 

  10. M.Y. Yu, Z. Chen, L. Stenflo, Phys. Plasmas 8, 5081 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  11. L. Stenflo, M.Y. Yu, Phys. Plasmas 10, 912 (2003)

    Article  ADS  Google Scholar 

  12. H.J. Lee, Phys. Plasmas 12, 094701 (2005)

    Article  ADS  Google Scholar 

  13. V. Girka, I. Girka, M. Thumm, Surface Flute Waves in Plasmas (Springer, Cham, 2014)

  14. G. Bekefi, Radiation Processes in Plasmas (Wiley, New York, 1966)

  15. L. Stenflo, M.Y. Yu, P.K. Shukla, Phys. Fluids 16, 450 (1973)

    Article  ADS  Google Scholar 

  16. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd edn. (Wiley, New York, 2005)

    Book  Google Scholar 

  17. N. Shimomura, K. Mitani, S. Tanaka, J. Phys. Soc. Jpn. 21,1372 (1966)

    Article  ADS  Google Scholar 

  18. K. Bartschat, J. Tennyson, O. Zatsarinny, Plasma Process Polym. 14, 1600093 (2017)

    Article  Google Scholar 

  19. A. Hasegawa, Plasma Instabilities and Nonlinear Effects (Springer, Berlin, 1975)

  20. P.M. Bellan, Fundamentals of Plasma Physics (Cambridge University Press, Cambridge, 2006)

  21. K.-Z. Zhang, J.-K. Xue, Phys. Plasmas 17, 032113 (2010)

    Article  ADS  Google Scholar 

  22. N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York, 1973)

    Article  ADS  Google Scholar 

  23. T.S. Ramazanov, K.N. Dzhumagulova, Yu.A. Omarbakiyeva, G. Röpke, J. Phys. A 39, 4369 (2006)

    Article  ADS  Google Scholar 

  24. T.S. Ramazanov, K.N. Dzhumagulova, M.T. Gabdullin, A. Zh Akbar, R. Redmer, J. Phys. A 42, 214049 (2009)

    Article  ADS  Google Scholar 

  25. T.S. Ramazanov, K.M. Turekhanova, J. Phys. A 42, 214050 (2009)

    Article  ADS  Google Scholar 

  26. M. Jamil, M. Shahid, W. Ali, M. Salimullah, H.A. Shah, G. Murtaza, Phys. Plasmas 18, 063705 (2011)

    Article  ADS  Google Scholar 

  27. M. Akbari-Moghanjoughi, Phys. Plasmas 19, 032703 (2012)

    Article  ADS  Google Scholar 

  28. K.N. Dzhumagulova, T.S. Ramazanov, R.U. Masheeva, Phys. Plasmas 20, 113702 (2013)

    Article  ADS  Google Scholar 

  29. M. Jamil, Z. Mir, M. Asif, M. Salimullah, Phys. Plasmas 21, 092111 (2014)

    Article  ADS  Google Scholar 

  30. S. Ali, M.H. Nasim, G. Murtaza, Phys. Plasmas 10, 4207 (2003)

    Article  ADS  Google Scholar 

  31. N. Rubab, G. Murtaza, Phys. Scr. 73, 178 (2006)

    Article  ADS  Google Scholar 

  32. M.-J. Lee, Y.-D. Jung, Plasma Phys. Control. Fusion 59, 045004 (2017)

    Article  ADS  Google Scholar 

  33. M.-J. Lee, Y.-D. Jung, Plasma Phys. Control. Fusion 59, 095007 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Dae Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MJ., Jung, YD. Strong decay modes of warm space-charge waves in thermal plasma waveguides. Eur. Phys. J. D 72, 163 (2018). https://doi.org/10.1140/epjd/e2018-90017-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90017-y

Keywords

Navigation