Advertisement

Strong decay modes of warm space-charge waves in thermal plasma waveguides

  • Myoung-Jae Lee
  • Young-Dae JungEmail author
Regular Article
  • 32 Downloads

Abstract

The strong collisional decay modes of warm space-charge waves are derived in a thermal plasma waveguide composed of warm collisional electrons and cold ions. The kinetic theory is applied to obtain the dispersion relation of the space-charge wave. In addition, the analytic expressions of the real part and the damping rate of the wave frequency are obtained for a plasma waveguide including the influence of collision and geometric configuration. It is found that the space-charge wave has the strong decay mode in small wave numbers. In these decay modes, the damping rate increases with an increase of the collision frequency and decreases with an increase of the order of the root of the Bessel function. It is found that the damping rate of the space-charge wave increases with an increase of the radius of the plasma waveguide. It is also found that the space-charge wave is always highly damped in the propagation domain. In addition, the influence of geometric configuration on the damping rate is found to be much significant in high-harmonic cases.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    O.M. Gradov, L. Stenflo, Phys. Rep. 94, 111 (1983) ADSCrossRefGoogle Scholar
  2. 2.
    A.F. Alexandrov, L.S. Bogdankevich, A.A. Rukhadze, Principles of Plasma Electrodynamics (Springer, Berlin, 1984) Google Scholar
  3. 3.
    O.M. Gradov, L. Stenflo, Phys. Fluids B 3, 3201 (1991) ADSCrossRefGoogle Scholar
  4. 4.
    L. Stenflo, M.Y. Yu, Phys. Plasmas 2, 1494 (1995) ADSCrossRefGoogle Scholar
  5. 5.
    L. Stenflo, Phys. Scr. T 63, 59 (1996) ADSCrossRefGoogle Scholar
  6. 6.
    L. Stenflo, M.Y. Yu, Phys. Plasmas 5, 3122 (1998) ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    H.S. Hong, H.J. Lee, Phys. Plasmas 6, 3422 (1999) ADSCrossRefGoogle Scholar
  8. 8.
    Yu.M. Aliev, H. Schlüter, A. Shivarova, Guided-Wave-Produced Plasmas (Springer, Berlin, 2000) Google Scholar
  9. 9.
    L. Stenflo, P.K. Shukla, M.Y. Yu, Phys. Plasmas 7, 2731 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    M.Y. Yu, Z. Chen, L. Stenflo, Phys. Plasmas 8, 5081 (2001) ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    L. Stenflo, M.Y. Yu, Phys. Plasmas 10, 912 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    H.J. Lee, Phys. Plasmas 12, 094701 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    V. Girka, I. Girka, M. Thumm, Surface Flute Waves in Plasmas (Springer, Cham, 2014) Google Scholar
  14. 14.
    G. Bekefi, Radiation Processes in Plasmas (Wiley, New York, 1966) Google Scholar
  15. 15.
    L. Stenflo, M.Y. Yu, P.K. Shukla, Phys. Fluids 16, 450 (1973) ADSCrossRefGoogle Scholar
  16. 16.
    M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd edn. (Wiley, New York, 2005) CrossRefGoogle Scholar
  17. 17.
    N. Shimomura, K. Mitani, S. Tanaka, J. Phys. Soc. Jpn. 21,1372 (1966) ADSCrossRefGoogle Scholar
  18. 18.
    K. Bartschat, J. Tennyson, O. Zatsarinny, Plasma Process Polym. 14, 1600093 (2017) CrossRefGoogle Scholar
  19. 19.
    A. Hasegawa, Plasma Instabilities and Nonlinear Effects (Springer, Berlin, 1975) Google Scholar
  20. 20.
    P.M. Bellan, Fundamentals of Plasma Physics (Cambridge University Press, Cambridge, 2006) Google Scholar
  21. 21.
    K.-Z. Zhang, J.-K. Xue, Phys. Plasmas 17, 032113 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York, 1973) ADSCrossRefGoogle Scholar
  23. 23.
    T.S. Ramazanov, K.N. Dzhumagulova, Yu.A. Omarbakiyeva, G. Röpke, J. Phys. A 39, 4369 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    T.S. Ramazanov, K.N. Dzhumagulova, M.T. Gabdullin, A. Zh Akbar, R. Redmer, J. Phys. A 42, 214049 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    T.S. Ramazanov, K.M. Turekhanova, J. Phys. A 42, 214050 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    M. Jamil, M. Shahid, W. Ali, M. Salimullah, H.A. Shah, G. Murtaza, Phys. Plasmas 18, 063705 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    M. Akbari-Moghanjoughi, Phys. Plasmas 19, 032703 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    K.N. Dzhumagulova, T.S. Ramazanov, R.U. Masheeva, Phys. Plasmas 20, 113702 (2013) ADSCrossRefGoogle Scholar
  29. 29.
    M. Jamil, Z. Mir, M. Asif, M. Salimullah, Phys. Plasmas 21, 092111 (2014) ADSCrossRefGoogle Scholar
  30. 30.
    S. Ali, M.H. Nasim, G. Murtaza, Phys. Plasmas 10, 4207 (2003) ADSCrossRefGoogle Scholar
  31. 31.
    N. Rubab, G. Murtaza, Phys. Scr. 73, 178 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    M.-J. Lee, Y.-D. Jung, Plasma Phys. Control. Fusion 59, 045004 (2017) ADSCrossRefGoogle Scholar
  33. 33.
    M.-J. Lee, Y.-D. Jung, Plasma Phys. Control. Fusion 59, 095007 (2017) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Research Institute for Natural SciencesHanyang UniversitySeoulSouth Korea
  2. 2.Department of Applied Physics and Department of BionanotechnologyHanyang UniversityAnsan, Kyunggi-DoSouth Korea
  3. 3.Department of Electrical and Computer Engineering, MC 0407University of California, San DiegoLa JollaUSA

Personalised recommendations