Advertisement

Field-free orientation of CO molecule by combining two-color femtosecond laser pulse with time-delayed positively chirped laser pulse

  • Hong-Cai Tao
  • Shuo Wang
  • Wei-Shen Zhan
  • Ce Hao
  • Hui-Fang Li
Regular Article
  • 26 Downloads

Abstract

The orientation of CO molecule controlled by two-color femtosecond laser pulse and positively chirped laser pulse is investigated theoretically. Compared with the single two-color or positively chirped laser pulse, the combination of two laser pulses with an optimized delay time can greatly improve the degrees of the positive and negative molecular orientation, respectively. The effects of intensity of two-color femtosecond laser pulse on molecular orientation are discussed, and the molecular orientation can be achieved by a calculated intensity. Additionally, the delay time between two-color femtosecond laser pulse and positively chirped laser pulse can significantly enhance the molecular orientation. Furthermore, by varying the carrier frequency and the chirp value of the positively chirped laser pulse, it is shown that the molecular orientation can be changed to some degree. The positive and negative molecular orientation can also be manipulated by adjusting the relative amplitude of the second harmonic field with respect to the fundamental.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    M.J.J. Vrakking, S. Stolte, Chem. Phys. Lett. 271, 209 (1997) ADSCrossRefGoogle Scholar
  2. 2.
    K.F. Lee, et al., J. Phys. B 37, L43 (2004) CrossRefGoogle Scholar
  3. 3.
    H. Li, et al., Phys. Rev. A 84, 043429 (2011) ADSCrossRefGoogle Scholar
  4. 4.
    T. Kasai, et al., Phys. Rev. Lett. 70, 3864 (1993) ADSCrossRefGoogle Scholar
  5. 5.
    X.B. Bian, A.D. Bandrauk, Phys. Rev. A 86, 053417 (2012) ADSCrossRefGoogle Scholar
  6. 6.
    P.M. Kraus, D. Baykusheva, H.J. Warner, Phys. Rev. Lett. 113, 023001 (2014) ADSCrossRefGoogle Scholar
  7. 7.
    A. Jaro-Becker, A. Becker, F.H.M. Faisal, J. Phys. B 36, L375 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    A. Yagishita, J. Electron. Spectrosc. 200, 247 (2015) CrossRefGoogle Scholar
  9. 9.
    D.H. Parker, R.B. Bernstein, Annu. Rev. Phys. Chem. 40, 561 (1989) ADSCrossRefGoogle Scholar
  10. 10.
    J. Bulthuis, J. Moller, H. J. Loesch, J. Phys. Chem. A 101, 7684 (1997) CrossRefGoogle Scholar
  11. 11.
    B. Friedrich, D.R. Herschbach, Z. Phys. D: At. Mol. 18, 153 (1991) ADSCrossRefGoogle Scholar
  12. 12.
    B. Friedrich, D. Herschbach, J. Phys. Chem. A 103, 10280 (1999) CrossRefGoogle Scholar
  13. 13.
    L. Cai, J. Marango, B. Friedrich, Phys. Rev. Lett. 86, 775 (2001) ADSCrossRefGoogle Scholar
  14. 14.
    J. Yu, et al., Chem. Phys. 400, 93 (2012) CrossRefGoogle Scholar
  15. 15.
    C. Qin, et al., Eur. Phys. J. D 68, 108 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    S. De, et al., Phys. Rev. Lett. 103, 153002 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    J. Wu, H. Zeng, Phys. Rev. A 81, 053401 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    S. Zhang, et al., Phys. Rev. A 83, 023416 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    A. Matos-Abiague, J. Berakdar, Phys. Rev. A 68, 063411 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    H. Yu-Xin, et al., Chin. Phys. Lett. 24, 3111 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    C.C. Shu, et al., J. Chem. Phys. 132, 244311 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    F. Lgar, et al., Phys. Rev. Lett. 91, 093002 (2003) ADSCrossRefGoogle Scholar
  23. 23.
    G.L. Kamta, A.D. Bandrauk, Phys. Rev. A 76, 053409 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    C. Qin, et al., Phys. Rev. A 85, 053415 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    Y. Pang, et al., Eur. Phys. J. D 70, 94 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    J. Ortigoso, J. Chem. Phys. 137, 044303 (2012) ADSCrossRefGoogle Scholar
  27. 27.
    Z.Y. Zhao, et al., J. Chem. Phys. 139, 044305 (2013) ADSCrossRefGoogle Scholar
  28. 28.
    K. Kitano, N. Ishii, J. Itatani, Phys. Rev. A 84, 053408 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    H. Li, etal., Phys. Rev. A 88, 013424 (2013) ADSCrossRefGoogle Scholar
  30. 30.
    Y. Liu, et al., Laser Phys. Lett. 10, 076001 (2013) ADSCrossRefGoogle Scholar
  31. 31.
    H.P. Dang, et al., Laser Phys. 25, 075301 (2015) ADSCrossRefGoogle Scholar
  32. 32.
    J. Yang, et al., Eur. Phys. J. D 66, 102 (2012) ADSCrossRefGoogle Scholar
  33. 33.
    Z. Huang, et al., Chem. Phys. Lett. 627, 53 (2015) ADSCrossRefGoogle Scholar
  34. 34.
    M. Spanner, et al., Phys. Rev. Lett. 109, 11 (2012) CrossRefGoogle Scholar
  35. 35.
    T. Kanai, H. Sakai, J. Chem. Phys. 115, 5492 (2001) ADSCrossRefGoogle Scholar
  36. 36.
    H. Yun, et al., Phys. Rev. A 84, 065401 (2011) ADSCrossRefGoogle Scholar
  37. 37.
    J. Salomon, C.M. Dion, G. Turinici, J. Chem. Phys. 123, 144310 (2005) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hong-Cai Tao
    • 1
  • Shuo Wang
    • 1
  • Wei-Shen Zhan
    • 1
  • Ce Hao
    • 1
  • Hui-Fang Li
    • 1
  1. 1.School of Mathematical and Physical Sciences, Dalian University of TechnologyPanjinP.R. China

Personalised recommendations