Advertisement

Structure and properties of B20Si−∕0∕+ clusters

  • Qi Liang Lu
  • Qi Quan Luo
  • Yi De Li
  • Shou Guo Huang
Regular Article
  • 35 Downloads

Abstract

A global search for the lowest energy structure of B20Si, B20Si0 and B20Si+ clusters is conducted. Structural transitions at different charge states are observed. B20Si is a 2D planar configuration with no polygonal holes, and Si atom occupies a peripheral position. B20Si+ adopts a 3D tubular shape, and each Si is bonded with four B atoms. But for B20Si0, competition among quasi-planar, tubular and cage like structures is found. These structures differ greatly from that of pure B21 cluster. The structural transition may result from changes in the framework of bonding, sp2 hybridization, and structural mechanics. Some of the clusters’ properties including frontier molecular orbital, on-site charge on Si atom, electron density, and magnetism are also discussed.

Graphical abstract

Keywords

Clusters and Nanostructures 

References

  1. 1.
    A.I. Boldyrev, L.S. Wang, Phys. Chem. Chem. Phys. 18, 11589 (2016) CrossRefGoogle Scholar
  2. 2.
    A.P. Sergeeva, I.A. Popov, Z.A. Piazza, W.L. Li, C. Romanescu, L.S. Wang, A.I. Boldyrev, Acc. Chem. Res. 47, 1349 (2014) CrossRefGoogle Scholar
  3. 3.
    Z.A. Piazza, I.A. Popov, W.L. Li, R. Pal, X.C. Zeng, A.I. Boldyrev, L.S. Wang, J. Chem. Phys. 141, 034303 (2014) ADSCrossRefGoogle Scholar
  4. 4.
    I.A. Popov, Z.A. Piazza, W.L. Li, L.S. Wang, A.I. Boldyrev, J. Chem. Phys. 139, 144307 (2013) ADSCrossRefGoogle Scholar
  5. 5.
    A.P. Sergeeva, Z.A. Piazza, C. Romanescu, W.L. Li, A.I. Boldyrev, L.S. Wang, J. Am. Chem. Soc. 134, 18065 (2012) CrossRefGoogle Scholar
  6. 6.
    Z.A. Piazza, W.L. Li, C. Romanescu, A.P. Sergeeva, L.S. Wang, A.I. Boldyrev, J. Chem. Phys. 136, 104310 (2012) ADSCrossRefGoogle Scholar
  7. 7.
    W. Huang, A.P. Sergeeva, H.J. Zhai, B.B. Averkiev, L.S. Wang, A.I. Boldyrev, Nat. Chem. 2, 202 (2010) CrossRefGoogle Scholar
  8. 8.
    A.N. Alexandrova, A.I. Boldyrev, H.J. Zhai, L.S. Wang, Coord. Chem. Rev. 250, 2811 (2006) CrossRefGoogle Scholar
  9. 9.
    Q. Chen, W.J. Tian, L.Y. Feng, H.G. Lu, Y.W. Mu, H.J. Zhai, S.D. Li, L.S. Wang, Nanoscale 9, 4550 (2017) CrossRefGoogle Scholar
  10. 10.
    Z.A. Piazza, H.S. Hu, W.L. Li, Y.F. Zhao, J. Li, L.S. Wang, Nat. Commun. 5, 3113 (2014) CrossRefGoogle Scholar
  11. 11.
    W.L. Li, Q. Chen, W.J. Tian, H. Bai, Y.F. Zhao, H.S. Hu, J. Li, H.J. Zhai, S.D. Li, L.S. Wang, J. Am. Chem. Soc. 136, 12257 (2014) CrossRefGoogle Scholar
  12. 12.
    W.L. Li, Y.F. Zhao, H.S. Hu, J. Li, L.S. Wang, Angew. Chem. 126, 5646 (2014) CrossRefGoogle Scholar
  13. 13.
    X.M. Luo, T. Jian, L.J. Cheng, W.L. Li, Q. Chen, R. Li, H.J. Zhai, S.D. Li, A.I. Boldyrev, J. Li, L.S. Wang, Chem. Phys. Lett. 683, 336 (2017) ADSCrossRefGoogle Scholar
  14. 14.
    Q. Chen, W.L. Li, X.Y. Zhao, H.R. Li, L.Y. Feng, H.J. Zhai, S.D. Li, L.S. Wang, Eur. J. Inorg. Chem. 38–39, 4546 (2017) CrossRefGoogle Scholar
  15. 15.
    T.B. Tai, M.T. Nguyen, Phys. Chem. Chem. Phys. 17, 13672 (2015) CrossRefGoogle Scholar
  16. 16.
    T.B. Tai, L.V. Duong, H.T. Pham, D.T.T. Mai, M.T. Nguyen, Chem. Commun. 50, 1558 (2014) CrossRefGoogle Scholar
  17. 17.
    T.B. Tai, M.T. Nguyen, Chem. Commun. 51, 7677 (2015) CrossRefGoogle Scholar
  18. 18.
    Q. Chen, G.F. Wei, W.J. Tian, H. Bai, Z.P. Liu, H.J. Zhai, S.D. Li, Phys. Chem. Chem. Phys. 16, 18282 (2014) CrossRefGoogle Scholar
  19. 19.
    L.S. Wang, Int. Rev. Phys. Chem. 35, 69 (2016) CrossRefGoogle Scholar
  20. 20.
    R. Casillas, T. Baruah, R.R. Zope, Chem. Phys. Lett. 557, 15 (2013) ADSCrossRefGoogle Scholar
  21. 21.
    E. Oger, N.R.M. Crawford, R. Kelting, P. Weis, M.M. Kappes, R. Ahlrichs, Angew. Chem. Int. Ed. 46, 8503 (2007) CrossRefGoogle Scholar
  22. 22.
    Y.J. Wang, Y.F. Zhao, W.L. Li, T. Jian, Q. Chen, X.R. You, T. Ou, X.Y. Zhao, H.J. Zhai, S.D. Li, J. Li, L.S. Wang, J. Chem. Phys. 144, 064307 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    H.R. Li, T. Jian, W.L. Li, C.Q. Miao, Y.J. Wang, Q. Chen, X.M. Luo, K. Wang, H.J. Zhai, S.D. Li, L.S. Wang, Phys. Chem. Chem. Phys. 18, 29147 (2016) CrossRefGoogle Scholar
  24. 24.
    W.L. Li, T. Jian, X. Chen, H.R. Li, T.T. Chen, X.M. Luo, S.D. Li, J. Li, L.S. Wang, Chem. Commun. 53, 1587 (2017) CrossRefGoogle Scholar
  25. 25.
    D.T.T. Mai, L.V. Duong, T.B. Tai, M.T. Nguyen, J. Phys. Chem. A 120, 3623 (2016) CrossRefGoogle Scholar
  26. 26.
    T.B. Tai, P. Kadłubański, S. Roszak, D. Majumdar, J. Leszczynski, M.T. Nguyen, ChemPhysChem 12, 2948 (2011) CrossRefGoogle Scholar
  27. 27.
    P. Saha, A.B. Rahane, V. Kumar, N. Sukumar, Phys. Scr. 91, 053005 (2016) ADSCrossRefGoogle Scholar
  28. 28.
    R. Viswanathan, R.W. Schmude, K.A. Gingerich, J. Phys. Chem. 100, 10784 (1996) CrossRefGoogle Scholar
  29. 29.
    R. Davy, E. Skoumbourdis, D. Dinsmore, Mol. Phys. 103, 611 (2005) ADSCrossRefGoogle Scholar
  30. 30.
    L.V. Duong, M.T. Nguyen, Phys. Chem. Chem. Phys. 19, 14913 (2017) MathSciNetCrossRefGoogle Scholar
  31. 31.
    T.R. Galeev, W.L. Li, C. Romanescu, I. Černušák, L.S. Wang, A.I. Boldyrev, J. Chem. Phys. 137, 234306 (2012) ADSCrossRefGoogle Scholar
  32. 32.
    I.A. Popov, V.F. Popov, K.V. Bozhenko, I. Černušák, A.I. Boldyrev, J. Chem. Phys. 139, 114307 (2013) ADSCrossRefGoogle Scholar
  33. 33.
    B.B. Averkiev, D.Y. Zubarev, L.M. Wang, W. Huang, L.S. Wang, A.I. Boldyrev, J. Am. Chem. Soc. 130, 9248 (2008) CrossRefGoogle Scholar
  34. 34.
    Z. Cui, M. Contreras, Y. Ding, G. Merino, J. Am. Chem. Soc. 133, 13228 (2011) CrossRefGoogle Scholar
  35. 35.
    H.T. Pham, K.Z. Lim, R.W.A. Havenithcd, M.T. Nguyen, Phys. Chem. Chem. Phys. 18, 11919 (2016) CrossRefGoogle Scholar
  36. 36.
    B.B. Averkiev, L.M. Wang, W. Huang, L.S. Wang, A.I. Boldyrev, Phys. Chem. Chem. Phys. 11, 9840 (2009) CrossRefGoogle Scholar
  37. 37.
    L.M. Wang, W. Huang, B.B. Averkiev, A.I. Boldyrev, L.S. Wang, Angew. Chem. Int. Ed. 46, 4550 (2007) CrossRefGoogle Scholar
  38. 38.
    F. Cervantes-Navarro, G. Martínez-Guajardo, E. Osorio, D. Moreno, W. Tiznado, R. Islas, K.J. Donald, G. Merino, Chem. Commun. 50, 10680 (2014) CrossRefGoogle Scholar
  39. 39.
    Y.J. Wang, J.C. Guo, H.J. Zhai, Nanoscale 9, 9310 (2017) CrossRefGoogle Scholar
  40. 40.
    T. Lu, Molclus Program 2016 (Beijing Kein Research Center for Natural Science, China), Available at: http://www.keinsci.com/research/molclus.html
  41. 41.
    J.J.P. Stewart, MOPAC2016 (Stewart Computational Chemistry, Colorado Springs, CO, USA), Available at: http://OpenMOPAC.net
  42. 42.
    Q.L. Lu, Q.Q. Luo, S.G. Huang, Y.D. Li, Chem. Phys. Lett. 663, 128 (2016) ADSCrossRefGoogle Scholar
  43. 43.
    B. Delley, J. Chem. Phys. 92, 508 (1990) ADSCrossRefGoogle Scholar
  44. 44.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  45. 45.
    M.J. Frisch et al., Gaussian09, Revision D.01 (Gaussian Inc., Wallingford, CT, 2009) Google Scholar
  46. 46.
    H.T. Pham, L.V. Duong, B.Q. Pham, M.T. Nguyen, Chem. Phys. Lett. 577, 32 (2013) ADSCrossRefGoogle Scholar
  47. 47.
    L.V. Duong, M.T. Nguyen, Chem. Phys. Lett. 685, 377 (2017) ADSCrossRefGoogle Scholar
  48. 48.
    H.A. Kurtz, J.J.P. Stewar, K.M. Dieter, J. Comput. Chem. 11, 82 (1990) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qi Liang Lu
    • 1
  • Qi Quan Luo
    • 2
  • Yi De Li
    • 1
  • Shou Guo Huang
    • 1
  1. 1.School of Physics and Material Science, Anhui UniversityHefeiP.R. China
  2. 2.Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefeiP.R. China

Personalised recommendations