Atmospheric pressure plasma jet for biomedical applications characterised by passive thermal probe

  • Diana ManceEmail author
  • Ruben Wiese
  • Thorben Kewitz
  • Holger Kersten
Regular Article


Atmospheric pressure plasma jets (APPJs) are a promising tool in medicine with extensive possibilities of utilization. For a safe and therapeutically effective application of APPJs, it is necessary to know in detail the physical processes in plasma as well as possible hazards. In this paper, we focus on plasma thermal energy transferred to the substrate, i.e. to a passive thermal probe acting as substrate dummy. Specifically, we examined the dependence of transferred energy on the distance from the plasma source outlet, on the gas flow rate, and on the length of the visible plasma plume. The plasma plume is the plasma carried by the gas flow from the outlet of the source into the ambient air. The results show the distance between the plasma-generating device and the substrate to be the most important determinant of the transferred thermal energy, among the three examined variables. Most importantly for the end-user, the results also show this relation to be non-linear. To describe this relation, we chose a model based on a Boltzmann type of sigmoid function. Based on the results of our modelling and visual inspection of the plasma, we provide sort of a user guide for the adjustment of a suitable energy flux on the (bio) substrate.

Graphical abstract


Plasma Physics 


  1. 1.
    T. von Woedtke, H.R. Metelmann, K.D. Weltmann, Contrib. Plasma Phys. 54, 104 (2014) ADSCrossRefGoogle Scholar
  2. 2.
    K.D. Weltmann, T. von Woedtke, Plasma Phys. Control. Fusion 59, 014031 (2017) ADSCrossRefGoogle Scholar
  3. 3.
    B. Haertel, T. von Woedtke, K.D. Weltmann, U. Lindequist, Biomol. Ther. 22, 477 (2014) CrossRefGoogle Scholar
  4. 4.
    F. Brehmer, H.A. Haenssle, G. Daeschlein, R. Ahmed, S. Pfeiffer, A. Görlitz, D. Simon, M.P. Schön, D. Wandke, S. Emmert, J. Eur. Acad. Dermatol. Venereol. 29, 148 (2015) CrossRefGoogle Scholar
  5. 5.
    D. Mance, Med. Flum. 53, 179 (2017) CrossRefGoogle Scholar
  6. 6.
    Y. Ma, C.S. Ha, S.W. Hwang, H.J. Lee, G.C. Kim, K.W. Lee, K. Song, PLoS One 9, e91947 (2014) ADSCrossRefGoogle Scholar
  7. 7.
    K. Panngom, K.Y. Baik, M.K. Nam, J.H. Han, H. Rhim, E.H. Choi, Cell Death Dis. 4, e642 (2013) CrossRefGoogle Scholar
  8. 8.
    S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, M. Hori, Appl. Phys. Lett. 100, 113702 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    C. Hoffmann, C. Berganza, J. Zhang, Med. Gas Res. 3, 21 (2013) CrossRefGoogle Scholar
  10. 10.
    Y.H. Ryu, Y.H. Kim, J.Y. Lee, G.B. Shim, H.S. Uhm, G. Park, E.H. Choi, PLoS One 8, e66231 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    H. Jablonowski, T. von Woedtke, Clin. Plasma Med. 3, 42 (2015) CrossRefGoogle Scholar
  12. 12.
    D. Mance, H. Geilmann, W.A. Brand, T. Kewitz, H. Kersten, Plasma Process. Polym. 14, e1600239 (2017) CrossRefGoogle Scholar
  13. 13.
    K.D. Weltmann, T. von Woedtke, Eur. Phys. J. Appl. Phys. 55, 13807 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    K.H. Schoenbach, K. Becker, Eur. Phys. J. D 70, 29 (2016) ADSCrossRefGoogle Scholar
  15. 15.
    K.D. Weltmann, E. Kindel, R. Brandenburg, C. Meyer, R. Bussiahn, C. Wilke, T. von Woedtke, Contrib. Plasma Phys. 49, 631 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    S. Bornholdt, M. Wolter, H. Kersten, Eur. Phys. J. D 60, 653 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    K. Wende, S. Bekeschus, A. Schmidt, L. Jatsch, S. Hasse, K.D. Weltmann, K. Masur, T. von Woedtke, Mutat. Res. Genet. Toxicol. Environ. Mutagen. 789, 48 (2016) CrossRefGoogle Scholar
  18. 18.
    S. Reuter, J. Winter, S. Iséni, A. Schmidt-Bleker, M. Dünnbier, K. Masur, K. Wende, K.D. Weltmann, IEEE Trans. Plasma Sci. 43, 3185 (2015) ADSCrossRefGoogle Scholar
  19. 19.
    A. Schmidt-Bleker, J. Winter, A. Bösel, S. Reuter, K.D. Weltmann, Plasma Sour. Sci. Technol. 25, 015005 (2016) ADSCrossRefGoogle Scholar
  20. 20.
    J. Gay-Mimbrera, M.C. García, B. Isla-Tejera, A. Rodero-Serrano, A.V. García-Nieto, J. Ruano, Adv. Ther. 33, 894 (2016) CrossRefGoogle Scholar
  21. 21.
    D.M. Hepburn, I.J. Kemp, A.J. Shields, IEEE Trans. Electr. Insul. Mag. 16, 19 (2000) CrossRefGoogle Scholar
  22. 22.
    H. Kersten, D. Rohde, J. Berndt, H. Deutsch, R. Hippler, Thin Solid Films 377, 585 (2000) ADSCrossRefGoogle Scholar
  23. 23.
    M. Stahl, T. Trottenberg, H. Kersten, Rev. Sci. Instrum. 81, 023504 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    S. Bornholdt, T. Peter, T. Strunskus, V. Zaporojtchenko, F. Faupel, H. Kersten, Surf. Coat. Technol. 205, S388 (2011) CrossRefGoogle Scholar
  25. 25.
    A.M. Brown, Comput. Methods Programs Biomed. 65, 191 (2001) CrossRefGoogle Scholar
  26. 26.
    D.J. Jin, H.S. Uhm, G. Cho, Phys. Plasmas 20, 083513 (2013) ADSCrossRefGoogle Scholar
  27. 27.
    S. Iseni, A. Schmidt-Bleker, J. Winter, K.D. Weltmann, S. Reuter, J. Phys. D: Appl. Phys. 47, 152001 (2014) ADSCrossRefGoogle Scholar
  28. 28.
    S. Wu, Z. Wang, Q. Huang, X. Tan, X. Lu, K. Ostrikov, Phys. Plasmas 20, 023503 (2013) ADSCrossRefGoogle Scholar
  29. 29.
    S. Reuter, J. Winter, A. Schmidt-Bleker, D. Schroeder, H. Lange, N. Knake, V. Schulz-von der Gathen, K.D. Weltmann, Plasma Sources Sci. Technol. 21, 024005 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    S. Reuter, H. Tresp, K. Wende, M.U. Hammer, J. Winter, K. Masur, A. Schmidt-Bleker, K.D. Weltmann, IEEE Trans. Plasma Sci. 40, 2986 (2012) ADSCrossRefGoogle Scholar
  31. 31.
    P.J. Cullen, V. Milosavljević, Prog. Theor. Exp. Phys. 6, 063J01 (2015) CrossRefGoogle Scholar
  32. 32.
    M. Pinchuk, O. Stepanova, N. Kurakina, V. Spodobin, J. Phys. Conf. Ser. 830, 012060 (2017) CrossRefGoogle Scholar
  33. 33.
    M.D.V.S. Mussard, E. Foucher, A. Rousseau, J. Phys. D: Appl. Phys. 48, 424003 (2015) ADSCrossRefGoogle Scholar
  34. 34.
    T. Kewitz, M. Fröhlich, J. von Frieling, H. Kersten, IEEE Trans. Plasma Sci. 43, 1769 (2015) ADSCrossRefGoogle Scholar
  35. 35.
    S. Bekeschus, A. Schmidt, K.-D. Weltmann, T. von Woedtke, Clin. Plasma Med. 4, 19 (2016) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Diana Mance
    • 1
    • 2
    Email author
  • Ruben Wiese
    • 1
  • Thorben Kewitz
    • 1
  • Holger Kersten
    • 1
  1. 1.Institute of Experimental and Applied Physics, Kiel UniversityKielGermany
  2. 2.University of Rijeka, Department of PhysicsRijekaCroatia

Personalised recommendations