Tunable Fano resonance in MDM stub waveguide coupled with a U-shaped cavity

Regular Article
  • 25 Downloads

Abstract

A new compact metal-dielectric-metal waveguide system consisting of a stub coupled with a U-cavity is proposed to produce sharp and asymmetric Fano resonance. The transmission properties of the proposed structure are numerically studied by the finite element method and verified by the coupled mode theory. Simulation results reveal that the spectral profile can be easily tuned by adjusting the geometric parameters of the structure. One of the potential application of the proposed structure as a highly efficient plasmonic refractive index nanosensor was investigated with its sensitivity of more than 1000 nm/RIU and a figure of merit of up to 5500. Another application is integrated slow-light device whose group index can be greater than 6. In addition, multiple Fano resonances will occur in the broadband transmission spectrum by adding another U-cavity or (and) stub. The characteristics of the proposed structure are very promising for the highly performance filters, on-chip nanosensors, and slow-light devices.

Graphical abstract

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    X.T. Wu, J.P. Tian, R.C. Yang, Opt. Commun. 403, 185 (2017) ADSCrossRefGoogle Scholar
  2. 2.
    J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Rep. Prog. Phys. 70, 1 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Fang, M. Sun, Light: Sci. Appl. 4, e294 (2015) CrossRefGoogle Scholar
  4. 4.
    S.P. Zhan, H.J. Li, G.T. Cao, Z.H. He, B.X. Li, H. Xu, Plasmonics 9, 1431 (2014) CrossRefGoogle Scholar
  5. 5.
    J. Tao, X.G. Huang, X. Lin, J. Chen, Q. Zhang, X. Jin, J. Opt. Soc. Am. B 27, 323 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    Y.H. Guo, L.S. Yan, W. Pan, B. Luo, K.H. Wen, Z. Guo, H.Y. Li, X.G. Luo, Opt. Express 19, 13831 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    J.P. Tian, R.C. Yang, L.J. Song, W.R. Xue, IEEE J. Quantum Electron. 50, 898 (2014) ADSCrossRefGoogle Scholar
  8. 8.
    W.J. Wu, J.B. Yang, J.J. Zhang, J. Huang, D.B. Chen, H.Q. Wang, Opt. Lett. 41, 2310 (2016) ADSCrossRefGoogle Scholar
  9. 9.
    Z. Zhang, F.H. Shi, Y.H. Chen, Plasmonics 10, 139 (2015) CrossRefGoogle Scholar
  10. 10.
    J.J. Chen, Z. Li, Y.J. Zou, Q.H. Gong, Plasmonics 8, 1627 (2013) CrossRefGoogle Scholar
  11. 11.
    H. Lu, X.M. Liu, D. Mao, G.X. Wang, Opt. Lett. 37, 3780 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    T.S. Wu, Y.M. Liu, Z.Y. Yu, Y.W. Peng, C.G. Shu, H. Ye, Opt. Express 22, 7669 (2014) ADSCrossRefGoogle Scholar
  13. 13.
    G.X. Wang, H. Lu, X.M. Liu, D. Mao, L.N. Duan, Opt. Express 19, 3513 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    H. Lu, X.M. Liu, Y.K. Gong, D. Mao, L.R. Wang, Opt. Express 19, 12885 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    A. Vafafard, M. Mahmoudi, Appl. Opt. 54, 10613 (2015) ADSCrossRefGoogle Scholar
  16. 16.
    Z.D. Zhang, H.Y. Wang, Z.Y. Zhang, Plasmonics 8, 797 (2013) CrossRefGoogle Scholar
  17. 17.
    J.Q. Wang, C.Z. Fan, J.N. He, P. Ding, E.J. Liang, Q.Z. Xue, Opt. Express 21, 2236 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    Y. Li, X.D. He, M.J. Wan, W.Y. Wu, Z. Chen, Appl. Phys. Lett. 109, 031909 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    Z. Chen, L. Yu, L.L. Wang, G.Y. Duan, Y.F. Zhao, J.H. Xiao, IEEE Photon. Technol. Lett. 27, 1695 (2015) ADSCrossRefGoogle Scholar
  20. 20.
    M. Zhang, J.W. Fang, F. Zhang, J.Y. Chen, H.L. Yu, Opt. Commun. 405, 216 (2017) ADSCrossRefGoogle Scholar
  21. 21.
    S.L. Li, Y.Y. Zhang, X.K. Song, Y.L. Wang, L. Yu, Opt. Express 24, 15351 (2016) ADSCrossRefGoogle Scholar
  22. 22.
    Y.L. Wang, S.L. Li, Y.Y. Zhang, L. Yu, IEEE Photon. J. 8, 4502608 (2016) Google Scholar
  23. 23.
    B.F. Yun, G.H. Hu, R.H. Zhang, Y.P. Cui, J. Opt. 18, 055002 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    K.H. Wen, Y.H. Hu, L. Chen, J.Y. Zhou, L. Lei, Z.M. Meng, Plasmonics 11, 315 (2016) CrossRefGoogle Scholar
  25. 25.
    N. Lin, L. Langguth, T. Weiss, J. Kastel, M. Fleisch, T. Pfau, H. Giedden, Nat. Mater. 8, 758 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    K.H. Wen, Y.H. Hu, L. Chen, J.Y. Zhou, M. He, L. Lei, Z.M. Meng, Plasmonics 12, 427 (2017) CrossRefGoogle Scholar
  27. 27.
    X.S. Lin, X.G. Huang, Opt. Lett. 33, 2874 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    Q. Li, T. Wang, Y.K. Su, M. Yan, M. Qiu, Opt. Express 18, 8367 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    B.F. Yun, R.H. Zhang, G.H. Hu, Y.P. Cui, Plasmonics 11, 1157 (2016) CrossRefGoogle Scholar
  30. 30.
    Z. Chen, L. Yu, L.L. Wang, G.Y. Duan, Y.F. Zhao, J.H. Xiao, J. Lightwave Technol. 33, 3250 (2015) ADSCrossRefGoogle Scholar
  31. 31.
    W.J. Mai, Y.L. Wang, Y.Y. Zhang, L.N. Cui, L. Yu, Chin. Phys. Lett. 34, 024204 (2017) ADSCrossRefGoogle Scholar
  32. 32.
    H. Yang, G.H. Li, L. Wang, H.J. Li, X.S. Chen, Opt. Commun. 364, 83 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    Z.H. Han, S.I. Bozhevolny, Opt. Express 19, 3251 (2011) ADSCrossRefGoogle Scholar
  34. 34.
    Y. Huang, C.J. Min, G. Veronis, Appl. Phys. Lett. 99, 143117 (2011) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Physics & Electronics Engineering, Shanxi UniversityTaiyuanP.R. China
  2. 2.School of Modern Educational Technology, Shanxi UniversityTaiyuanP.R. China

Personalised recommendations