Advertisement

Equilibration in two-dimensional Bose systems with disorders

  • Miroslav Urbanek
  • Pavel SoldánEmail author
Regular Article
  • 22 Downloads

Abstract

A recent experiment in a two-dimensional optical lattice with random disorder potentials [J.-y. Choi et al., Science 352, 1547 (2016)] provided evidence of nonergodic behaviour in a gas of strongly-interacting ultracold atoms. The authors found a critical disorder strength that separates system dynamics into an ergodic and a nonergodic regime which they interpreted as many-body localization transition. We model an analogous but smaller system numerically using a method based on tree tensor networks and try to follow the experimental setup as closely as possible. Our results support the experimental observation of the two dynamics regimes, where for weak disorders particles spread over the lattice and thermalize, and for strong disorders the system keeps a memory of the initial state even after fairly long evolution times. Because the imbalance and the entanglement entropy are not fully saturated at our longest evolution times, we propose to perform experiments with smaller systems and with longer evolution times that are also accessible in numerical simulations. Then, the comparison of experimental and numerical data can unambiguously resolve the question whether the observed effect is truly a case of many-body localization transition.

Graphical abstract

Keywords

Cold Matter and Quantum Gas 

References

  1. 1.
    S. Trotzky, Y.-A. Chen, A. Flesch, I.P. McCulloch, U. Schollwöck, J. Eisert, I. Bloch, Nat. Phys. 8, 325 (2012) CrossRefGoogle Scholar
  2. 2.
    J. Eisert, M. Friesdorf, C. Gogolin, Nat. Phys. 11, 124 (2015) CrossRefGoogle Scholar
  3. 3.
    A.M. Kaufman, M.E. Tai, A. Lukin, M. Rispoli, R. Schittko, P.M. Preiss, M. Greiner, Science 353, 794 (2016) ADSCrossRefGoogle Scholar
  4. 4.
    M. Schreiber, S.S. Hodgman, P. Bordia, H.P. Lüschen, M.H. Fischer, R. Vosk, E. Altman, U. Schneider, I. Bloch, Science 349, 842 (2015) ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    J.-y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D.A. Huse, I. Bloch, C. Gross, Science 352, 1547 (2016) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    E. Altman, R. Vosk, Annu. Rev. Condens. Matter Phys. 6, 383 (2015) ADSCrossRefGoogle Scholar
  7. 7.
    R. Nandkishore, D.A. Huse, Annu. Rev. Condens. Matter Phys. 6, 15 (2015) ADSCrossRefGoogle Scholar
  8. 8.
    M. Yan, H.-Y. Hui, M. Rigol, V.W. Scarola, Phys. Rev. Lett. 119, 073002 (2017) ADSCrossRefGoogle Scholar
  9. 9.
    Y.-Y. Shi, L.M. Duan, G. Vidal, Phys. Rev. A 74, 022320 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    L. Tagliacozzo, G. Evenbly, G. Vidal, Phys. Rev. B 80, 235127 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    V. Murg, F. Verstraete, O. Legeza, R.M. Noack, Phys. Rev. B 82, 205105 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    S. Östlund, S. Rommer, Phys. Rev. Lett. 75, 3537 (1995) ADSCrossRefGoogle Scholar
  13. 13.
    J. Dukelsky, M.A. Martín-Delgado, T. Nishino, G. Sierra, Europhys. Lett. 43, 457 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    I.P. McCulloch, J. Stat. Mech. Theor. Exp. 2007, P10014 (2007) CrossRefGoogle Scholar
  15. 15.
    F. Verstraete, V. Murg, J.I. Cirac, Adv. Phys. 57, 143 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    U. Schollwöck, Ann. Phys. 326, 96 (2011) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    S.R. White, Phys. Rev. Lett. 69, 2863 (1992) ADSCrossRefGoogle Scholar
  18. 18.
    S.R. White, Phys. Rev. B 48, 10345 (1993) ADSCrossRefGoogle Scholar
  19. 19.
    U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    G. Vidal, Phys. Rev. Lett. 91, 147902 (2003) ADSCrossRefGoogle Scholar
  21. 21.
    G. Vidal, Phys. Rev. Lett. 93, 040502 (2004) ADSCrossRefGoogle Scholar
  22. 22.
    M. Urbanek, P. Soldán, Comput. Phys. Commun. 199, 170 (2016) ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    H.A. Gersch, G.C. Knollman, Phys. Rev. 129, 959 (1963) ADSCrossRefGoogle Scholar
  24. 24.
    M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989) ADSCrossRefGoogle Scholar
  25. 25.
    S. Singh, R.N.C. Pfeifer, G. Vidal, Phys. Rev. A 82, 050301 (2010) ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Singh, R.N.C. Pfeifer, G. Vidal, Phys. Rev. B 83, 115125 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    H.F. Trotter, P. Am. Math. Soc. 10, 545 (1959) CrossRefGoogle Scholar
  28. 28.
    M. Suzuki, Commun. Math. Phys. 51, 183 (1976) ADSCrossRefGoogle Scholar
  29. 29.
    M. Suzuki, Phys. Lett. A 146, 319 (1990) ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    G.H. Golub, C.F. Van Loan, Matrix Computations, 4th edn. (Johns Hopkins University Press, Baltimore, Maryland, 2012) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical Physics and Optics, Faculty of Mathematics and PhysicsCharles UniversityPrague 2Czech Republic

Personalised recommendations