Advertisement

Prediction of exotic ion-crystal structures in a Paul trap

  • Varun Ursekar
  • Joseph M. Silvester
  • Yun Seong Nam
  • Reinhold Blümel
Regular Article
  • 25 Downloads

Abstract

Trapped Coulomb crystals are of prime importance for the fields of one-component plasmas, quantum computing, quantum simulations, artificial atoms, nonlinear spectroscopy, and structural phase transitions. In all these applications it is essential to be able to accurately predict the structure of the crystals given the trapping parameters. For the Paul trap, one of the most promising platforms for quantum computing, this is nontrivial, since the confining radio-frequency fields are time-dependent. The pseudopotential approach eliminates this time-dependence. However, the standard pseudopotential, commonly used in atomic physics and quantum computing applications, is not even powerful enough to predict all stable two-ion crystal configurations. In this paper, we develop an improved pseudopotential, applicable to few-ion Coulomb crystals. Our potential is vastly more accurate than the standard version, and is powerful enough to predict analytically the existence and structural phase boundaries of new three- and four-ion configurations that are completely missed by the standard pseudopotential. In particular, we make quantitative predictions of the border lines between different crystal configurations in the Paul trap’s (q, a) stability diagram, which can be used to accurately switch between configurations. In addition, our improved pseudopotential accurately predicts the tilt angles of two-ion crystals. We also delineate the regions in (q, a) control parameter space where no two-, three-, and four-ion crystals exist. While this region is known for two-ion crystals, the regions for three- and four-ion crystals are new.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    F. Diedrich, E. Peik, J.M. Chen, W. Quint, H. Walther, Phys. Rev. Lett. 59, 2931 (1987) ADSCrossRefGoogle Scholar
  2. 2.
    D.J. Wineland, J.C. Bergquist, W.M. Itano, J.J. Bollinger, C.H. Manney, Phys. Rev. Lett. 59, 2935 (1987) ADSCrossRefGoogle Scholar
  3. 3.
    C.R. Monroe, R.J. Schoelkopf, M.D. Lukin, Sci. Am. 314, 50 (2016) CrossRefGoogle Scholar
  4. 4.
    S. Debnath, N.M. Linke, C. Figgatt, K.A. Landsman, K. Wright, C. Monroe, Nature 536, 63 (2016) ADSCrossRefGoogle Scholar
  5. 5.
    D. Hucul, I.V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S.M. Clark, C. Monroe, Nat. Phys. (Lond.) 11, 37 (2015) CrossRefGoogle Scholar
  6. 6.
    C. Monroe, R. Raussendorf, A. Ruthven, K.R. Brown, P. Maunz, L.-M. Duan, J. Kim, Phys. Rev. A 89, 022317 (2014) ADSCrossRefGoogle Scholar
  7. 7.
    J.M. Taylor, T. Calarco, Phys. Rev. A 78, 062331 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    I.M. Buluta, M. Kitaoka, S. Georgescu, S. Hasegawa, Phys. Rev. A 77, 062320 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    C. Shen, L.-M. Duan, Phys. Rev. A 90, 022332 (2014) ADSCrossRefGoogle Scholar
  10. 10.
    S.-T. Wang, C. Shen, L.-M. Duan, Sci. Rep. 5, 8555 (2015) CrossRefGoogle Scholar
  11. 11.
    P. Richerme, Phys. Rev. A 94, 032320 (2016) ADSCrossRefGoogle Scholar
  12. 12.
    R. Blatt, C.F. Roos, Nat. Phys. 8, 277 (2012) CrossRefGoogle Scholar
  13. 13.
    M. Johanning, A.F. Varón, C. Wunderlich, J. Phys. B: At. Mol. Opt. Phys. 42, 154009 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E.E. Edwards, J.K. Freericks, G.-D. Lin, L.-M. Duan, C. Monroe, Nature 465, 590 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    J.G. Bohnet, B.C. Sawyer, J.W. Britton, M.L. Wall, A.M. Rey, M. Foss-Feig, J.J. Bollinger, Science 352, 1297 (2016) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    D.G. Enzer, M.M. Schauer, J.J. Gomez, M.S. Gulley, M.H. Holzscheiter, P.G. Kwiat, S.K. Lamoreaux, C.G. Peterson, V.D. Sandberg, D. Tupa, A.G. White, R.J. Hughes, D.F.V. James, Phys. Rev. Lett. 85, 2466 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    P. Horak, A. Dantan, M. Drewsen, Phys. Rev. A 86, 043435 (2012) ADSCrossRefGoogle Scholar
  18. 18.
    L.L. Yan, W. Wan, L. Chen, F. Zhou, S.J. Gong, X. Tong, M. Feng, Sci. Rep. 6, 21547 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    F. Calvo, C. Champenois, E. Yurtsever, Phys. Rev. A 80, 063401 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    E. Shimshoni, G. Morigi, S. Fishman, Phys. Rev. Lett. 106, 010401 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    S. Fishman, G. De Chiara, T. Calarco, G. Morigi, Phys. Rev. B 77, 064111 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    Z.-X. Gong, G.-D. Lin, L.-M. Duan, Phys. Rev. Lett. 105, 265703 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    A. Lemmer, C. Cormick, C.T. Schmiegelow, F. Schmidt-Kaler, M.B. Plenio, Phys. Rev. Lett. 114, 073001 (2015) ADSCrossRefGoogle Scholar
  24. 24.
    W.W. Smith, O.P. Marakov, J. Lin, J. Mod. Opt. 52, 2253 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    S. Lee, K. Ravi, and S. A. Rangwala, Phys. Rev. A 87, 052701 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    J.E. Wells, R. Blümel, J.M. Kwolek, D.S. Goodman, W.W. Smith, Phys. Rev. A 95, 053416 (2017) ADSCrossRefGoogle Scholar
  27. 27.
    J.M. Kwolek, D.S. Goodman, S.A. Entner, J.E. Wells, F.A. Narducci, W.W. Smith, Phys. Rev. A 97, 053420 (2018) ADSCrossRefGoogle Scholar
  28. 28.
    M.A. Kastner, Phys. Today 46, 24 (1993) ADSCrossRefGoogle Scholar
  29. 29.
    A. Tartakovskii (Ed.), Quantum Dots – Optics, Electron Transport and Future Applications (Cambridge University Press, Cambridge, 2012) Google Scholar
  30. 30.
    N.M. Freitag, L.A. Chizhova, P. Nemes-Incze, C.R. Woods, R.V. Gorbachev, Y. Cao, A.K. Geim, K.S. Novoselov, J. Burgdörfer, F. Libisch, M. Morgenstern, Nano Lett. 16, 5798 (2016) ADSCrossRefGoogle Scholar
  31. 31.
    H. Thomas, G.E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, D. Möhlmann, Phys. Rev. Lett. 73, 652 (1994) ADSCrossRefGoogle Scholar
  32. 32.
    T.E. Sheridan, Phys. Plasmas 12, 080701 (2005) ADSCrossRefGoogle Scholar
  33. 33.
    E.Y. Andrei (Ed.), Two-Dimensional Electron Systems (Kluwer Academic, Dordrecht, 1997) Google Scholar
  34. 34.
    E.R. Russell, F. Spaepen, D.A. Weitz, Phys. Rev. E 91, 032310 (2015) ADSCrossRefGoogle Scholar
  35. 35.
    E. Tjhung, L. Berthier, Phys. Rev. Lett. 114, 148301 (2015) ADSCrossRefGoogle Scholar
  36. 36.
    J.P. Schiffer, P. Kienle, Z. Phys. A 321, 181 (1985) ADSCrossRefGoogle Scholar
  37. 37.
    Y. Yuri, H. Okamoto, Phys. Rev. ST Accel. Beams 8, 114201 (2005) ADSCrossRefGoogle Scholar
  38. 38.
    U. Schramm, T. Schätz, D. Habs, Phys. Rev. Lett. 87, 184801 (2001) ADSCrossRefGoogle Scholar
  39. 39.
    U. Schramm, T. Schätz, D. Habs, Phys. Rev. E 66, 036501 (2002) ADSCrossRefGoogle Scholar
  40. 40.
    W. Paul, Rev. Mod. Phys. 62, 531 (1990) ADSCrossRefGoogle Scholar
  41. 41.
    P.K. Ghosh, Ion Traps (Clarendon Press, Oxford, 1995) Google Scholar
  42. 42.
    M.G. Moore, R. Blümel, Phys. Rev. A 50, R4453 (1994) ADSCrossRefGoogle Scholar
  43. 43.
    J.A. Hoffnagle, R.G. Brewer, Appl. Phys. B 60, 113 (1995) ADSCrossRefGoogle Scholar
  44. 44.
    M.G. Moore, R. Blümel, Phys. Scr. T 59, 429 (1995) ADSCrossRefGoogle Scholar
  45. 45.
    M.G. Raizen, J.M. Gilligan, J.C. Bergquist, W.M. Itano, D.J. Wineland, Phys. Rev. A 45, 6493 (1992) ADSCrossRefGoogle Scholar
  46. 46.
    M. Drewsen, C. Brodersen, L. Hornekær, J.S. Hangst, J.P. Schifffer, Phys. Rev. Lett. 81, 2878 (1998) ADSCrossRefGoogle Scholar
  47. 47.
    V. Ursekar, Y.S. Nam, R. Blümel, in preparation Google Scholar
  48. 48.
    R. Blümel, J.M. Chen, E. Peik, W. Quint, W. Schleich, Y.R. Shen, H. Walther, Nature 334, 309 (1988) ADSCrossRefGoogle Scholar
  49. 49.
    R. Blatt, G. Werth, Phys. Rev. A 25, 1476 (1982) ADSCrossRefGoogle Scholar
  50. 50.
    R.F. Wuerker, H. Shelton, R.V. Langmuir, J. Appl. Phys. 30, 342 (1959) Google Scholar
  51. 51.
    W. Paul, O. Osberghaus, E. Fischer Ein Ionenkäfig, Forschungsberichte des Wirtschafts und Verkehrsministeriums Nordrhein-Westfalen 415 (1958) Google Scholar
  52. 52.
    W. Paul, H.P. Reinhard, U. von Zahn, Z. f. Phys. 152, 143 (1958) ADSCrossRefGoogle Scholar
  53. 53.
    M. Abramowitz, I. A. Stegun (eds.), Handbook of Mathematical Functions, (National Bureau of Standards, Gaithersburg, MD, 1964) Google Scholar
  54. 54.
    R. Blümel, C. Kappler, W. Quint, H. Walther, Phys. Rev. A 40, 808 (1989) ADSCrossRefGoogle Scholar
  55. 55.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes, 2nd edn. (Cambridge University Press, Cambridge, 1992) Google Scholar
  56. 56.
    H.G. Dehmelt, Adv. At. Mol. Phys. 3, 53 (1967) ADSCrossRefGoogle Scholar
  57. 57.
    L.D. Landau, E.M. Lifshits, Mechanics, 2nd edn. (Pergamon Press, Oxford, 1976) Google Scholar
  58. 58.
    J.O. Carrico, in Dynamical Mass Spectrometry, edited by D. Price (Heyden, London, 1972), Vol. 3 Google Scholar
  59. 59.
    J.P. Schiffer, M. Drewsen, J.S. Hangst, L. Hornekaer, Proc. Natl. Acad. Sci. USA 97, 10697 (2000) ADSCrossRefGoogle Scholar
  60. 60.
    D.C. Rapaport, The Art of Molecular Dynamics Simulations, 2nd edn. (Cambridge University Press, Cambridge, 2004) Google Scholar
  61. 61.
    Y.S. Nam, E.B. Jones, R. Blümel, Phys. Rev. A 90, 013402 (2014) ADSCrossRefGoogle Scholar
  62. 62.
    H. Landa, M. Drewsen, B. Reznik1, A. Retzker, New J. Phys. 14, 093023 (2012) ADSCrossRefGoogle Scholar
  63. 63.
    D.K. Weiss, Y.S. Nam, R. Blümel, Phys. Rev. A 93, 043424 (2016) ADSCrossRefGoogle Scholar
  64. 64.
    H. Walther, Adv. At. Mol. Opt. Phys. 31, 137 (1993) ADSCrossRefGoogle Scholar
  65. 65.
    J. D. Tarnas, Y. S. Nam, R. Blümel, Phys. Rev. A 88, 041401 (2013) ADSCrossRefGoogle Scholar
  66. 66.
    S.T. Thornton, J.B. Marion, Classical Dynamics of Particles and Systems (Brooks/Cole, Belmont, CA, 2004) Google Scholar
  67. 67.
    J.W. Emmert, M. Moore, R. Blümel, Phys. Rev. A 48, R1757 (1993) ADSCrossRefGoogle Scholar
  68. 68.
    I.S. Gradshteyn, I.M. Ryzhik, in Table of Integrals, Series, and Products, 5th edn., edited by A. Jeffrey (Academic Press, Boston, 1994), Vol. 14, p. 1145 Google Scholar
  69. 69.
    L. Föppl, J. Reine Angew. Math. 141, 251 (1912) MathSciNetGoogle Scholar
  70. 70.
    D.C. Giancoli, Physics – Principles with Applications, 7th edn. (Pearson, Boston, 2014) Google Scholar
  71. 71.
    A.G. Fainshtein, N.L. Manakov, L.P. Rapoport, J. Phys. B: Atom. Molec. Phys. 11, 2561 (1978) ADSCrossRefGoogle Scholar
  72. 72.
    R. Lechner, Ch. Maier, C. Hempel, P. Jurcevic, B.P. Lanyon, Th. Monz, M. Brownnutt, R. Blatt, Ch.F. Roos, Phys. Rev. A 93, 053401 (2016) ADSCrossRefGoogle Scholar
  73. 73.
    F. Diedrich, J.C. Bergquist, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 62, 403 (1989) ADSCrossRefGoogle Scholar
  74. 74.
    C. Monroe, D.M. Meekhof, B.E. King, S.R. Jefferts, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 75, 4011 (1995) ADSCrossRefGoogle Scholar
  75. 75.
    A.J. Lichtenberg, M.A. Lieberman, in Regular and Stochastic Motion of Applied Mathematical Sciences (Springer, New York, 1983), Vol. 38 Google Scholar
  76. 76.
    H. Friedrich, Theoretical Atomic Physics, 3rd edn. (Springer, Berlin, 2006) Google Scholar
  77. 77.
    A. Retzker, R.C. Thompson, D.M. Segal, M.B. Plenio, Phys. Rev. Lett. 101, 260504 (2008) ADSCrossRefGoogle Scholar
  78. 78.
    E. Shimshoni, G. Morigi, S. Fishman, Phys. Rev. A 83, 032308 (2011) ADSCrossRefGoogle Scholar
  79. 79.
    J.D. Baltrusch, C. Cormick, G. De Chiara, T. Calarco, G. Morigi, Phys. Rev. A 84, 063821 (2011) ADSCrossRefGoogle Scholar
  80. 80.
    J.D. Baltrusch, C. Cormick, G. Morigi, Phys. Rev. A 86, 032104 (2012) ADSCrossRefGoogle Scholar
  81. 81.
    M. Mielenz et al., Nat. Commun. 7, 11839 (2016) ADSCrossRefGoogle Scholar
  82. 82.
    H. Landa, M. Drewsen, B. Reznik, A. Retzker, J. Phys. A: Math. Theor. 45, 455305 (2012) Google Scholar
  83. 83.
    D.C. Lay, Linear Algebra and Its Applications (Addison-Wesley, New York, 2003) Google Scholar
  84. 84.
    N. Jacobson, Basic Algebra I (Dover, Mineola, NY, 2009) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Varun Ursekar
    • 1
  • Joseph M. Silvester
    • 2
  • Yun Seong Nam
    • 3
    • 4
    • 5
  • Reinhold Blümel
    • 2
  1. 1.Department of PhysicsBoston UniversityBostonUSA
  2. 2.Department of PhysicsWesleyan UniversityCTUSA
  3. 3.Institute for Advanced Computer Studies, University of MarylandCollege ParkUSA
  4. 4.Joint Center for Quantum Information and Computer Science, Institute for Advanced Computer Studies, University of MarylandCollege ParkUSA
  5. 5.IonQ Inc.College ParkUSA

Personalised recommendations