Advertisement

Self-similar expansion of non-Maxwellian plasmas with thermal ions

  • Reza Shokoohi
  • Ebrahim Mohammadi Razi
Regular Article

Abstract

In this work, self-similar expansion of one-dimensional collisionless plasma into vacuum has been analytically calculated for non-Maxwellian particles. The calculations were carried out once with cold ions while having Lorentzian (kappa) distribution function (DF) for electrons and once with warm ions. The comparison of the results with the case of Maxwellian plasmas showed that the rate of expansion for the Maxwellian and kappa distributions differs substantially in high-energy tails. On the other hand, a more perfect and realistic DF including high-energy (super thermal) electrons has been modeled by kappa DF. It was found that, by increasing the population of energetic electrons, the expansion takes place faster and the ions are accelerated to higher energies. The effects of ions’ temperature have also been discussed through the paper. Finally, a relationship between “kappa” and “gamma” (polytropic exponent) has been defined and Lorentzian DF has been rewritten based on the polytropic exponent. Then a physical meaning has been defined for the “kappa” spectral index.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    A. Diaw, P. Mora, Phys. Rev. E 84, 036402 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    A. Diaw, P. Mora, Phys. Rev. E 86, 026403 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    Yu. V. Medvedev, Plasma Phys. Control. Fusion 53, 125007 (2011) ADSCrossRefGoogle Scholar
  4. 4.
    R. Shokoohi, H. Abbasi, J. Appl. Phys. 106, 033309 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    P. Mora, T. Grismayer, Phys. Rev. Lett. 102, 145001 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    T. Grismayer, P. Mora, J. C. Adam, A. Hron, Phys. Rev. E 77, 066407 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    P. Mora, Phys. Rev. E 91, 013107 (2015) ADSCrossRefGoogle Scholar
  8. 8.
    T. Grismayer, P. Mora, Phys. Plasmas 13, 032103 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    I.S. Elkamash, I. Kourakis, Phys. Rev. E 94, 053202 (2016) ADSCrossRefGoogle Scholar
  10. 10.
    M. Murakami, M. M. Basko, Phys. Plasmas 13, 12105 (2006) CrossRefGoogle Scholar
  11. 11.
    M. Murakami, Y.-G. Kang, K. Nishihara, S. Fujioka, H. Nishihara, Phys. Plasmas 12, 062706 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    A.V. Gurevich, L.V. Pariiskaya, L.P. Pitaevskii, Zh. Eksp. Teor. Fiz. 49, 647 (1965) Google Scholar
  13. 13.
    A.V. Gurevich, L.V. Pariiskaya, L.P. Pitaevskii, Sov. Phys. JETP 22, 449 (1966) ADSGoogle Scholar
  14. 14.
    C. Bellei, M.E Ford, T. Bartal, M.H. Key, H.S. McLean, P.K. Patel, R.B. Stephens, F.N. Beg, Phys. Plasmas 19, 033109 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    M. Borghesi, J. Fuchs, S.V. Bulanov, A.J. MacKinnon, P.K. Patel, M. Roth, Fusion Sci. Technol. 49, 412 (2006) CrossRefGoogle Scholar
  16. 16.
    M.M. Basko, Eur. Phys. J. D 41, 641 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    S.V. Bulanov, Plasms Phys. Rep. 30, 18 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    V.T. Tikhonchuk, A.A. Andreev, Plasma Phys. Control. Fusion 47, B869 (2016) Google Scholar
  19. 19.
    D.S. Dorozhkina, V.E. Semenov, Phys. Rev. Lett. 81, 2691 (1998) ADSCrossRefGoogle Scholar
  20. 20.
    A.V. Baitin, K.M. Kuzanyan, J. Plasma Phys. 59, 83 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    V.F. Kovalev, V.Yu. Bychenkov, V.T. Tikhonchuk, Zh. Eksp. Teor. Fiz. 122, 264 (2002) Google Scholar
  22. 22.
    V.F. Kovalev, V.Yu. Bychenkov, V.T. Tikhonchuk, JETP 95, 226 (2002) ADSCrossRefGoogle Scholar
  23. 23.
    V.F. Kovalev, V.Yu. Bychenkov, Phys. Rev. Lett. 90, 185004 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    P. Mora, Phys. Rev. Lett. 90, 185002 (2003) ADSCrossRefGoogle Scholar
  25. 25.
    D. Summers, R.M. Thorne. Phys. Fluids B 3, 1835 (1991) ADSCrossRefGoogle Scholar
  26. 26.
    D. Summers, R.M. Thorne. J. Geophys. Res. 97, 16827 (1992) ADSCrossRefGoogle Scholar
  27. 27.
    D. Summers, S. Xue, R.M. Thorne, Phys. Plasmas 1, 2012 (1994) ADSCrossRefGoogle Scholar
  28. 28.
    D. Summers, R.M. Thorne, H. Matsumoto, Phys. Plasmas 3, 2496 (1996) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    R.L. Mace, M.A. Hellberg, Phys. Plasmas 2, 2098 (1995) ADSCrossRefGoogle Scholar
  30. 30.
    M.R. Collier, Geophys. Res. Lett. 23, 1191 (1996) ADSCrossRefGoogle Scholar
  31. 31.
    M.N.S. Quresshi, H.A. Shah, G. Murtaza, S.J. Schwartz, F. Mahmood, Phys. Plasmas 11, 3819 (2004) ADSCrossRefGoogle Scholar
  32. 32.
    S.J. Schwartz, J. Geophys. Res. 93, 12923 (1988) ADSCrossRefGoogle Scholar
  33. 33.
    A.V. Gurevich, Sov. Phys. JETP 11, 1150 (1960) Google Scholar
  34. 34.
    R. Schlickeiser, Astron. Astrophys. 319, L5 (1997) ADSGoogle Scholar
  35. 35.
    V.M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968) ADSCrossRefGoogle Scholar
  36. 36.
    A. Hasegawa, K. Mima, M. Duong-van, Phys. Rev. Lett. 54, 2608 (1985) ADSCrossRefGoogle Scholar
  37. 37.
    T. Kiefer, T. Schlegel, Phys. Plasmas 19, 102101 (2012) ADSCrossRefGoogle Scholar
  38. 38.
    J.E. Crow, P.L. Auer, J. Plasma Phys. 14, 65 (1975) ADSCrossRefGoogle Scholar
  39. 39.
    Ch. Sack, H. Schamel, Phys. Rep. 156, 311 (1987) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsFaculty of Basic Sciences, University of BojnordBojnordIran

Personalised recommendations