Compression of a mixed antiproton and electron non-neutral plasma to high densities

  • Stefano Aghion
  • Claude Amsler
  • Germano Bonomi
  • Roberto S. Brusa
  • Massimo Caccia
  • Ruggero Caravita
  • Fabrizio Castelli
  • Giovanni Cerchiari
  • Daniel Comparat
  • Giovanni Consolati
  • Andrea Demetrio
  • Lea Di Noto
  • Michael Doser
  • Craig Evans
  • Mattia Fanì
  • Rafael Ferragut
  • Julian Fesel
  • Andrea Fontana
  • Sebastian Gerber
  • Marco Giammarchi
  • Angela Gligorova
  • Francesco Guatieri
  • Stefan Haider
  • Alexander Hinterberger
  • Helga Holmestad
  • Alban Kellerbauer
  • Olga Khalidova
  • Daniel Krasnický
  • Vittorio Lagomarsino
  • Pierre Lansonneur
  • Patrice Lebrun
  • Chloé Malbrunot
  • Sebastiano Mariazzi
  • Johann Marton
  • Victor Matveev
  • Zeudi Mazzotta
  • Simon R. Müller
  • Giancarlo Nebbia
  • Patrick Nedelec
  • Markus Oberthaler
  • Nicola Pacifico
  • Davide Pagano
  • Luca Penasa
  • Vojtech Petracek
  • Francesco Prelz
  • Marco Prevedelli
  • Benjamin Rienaecker
  • Jacques Robert
  • Ole M. Røhne
  • Alberto Rotondi
  • Heidi Sandaker
  • Romualdo Santoro
  • Lillian Smestad
  • Fiodor Sorrentino
  • Gemma Testera
  • Ingmari C. Tietje
  • Eberhard Widmann
  • Pauline Yzombard
  • Christian Zimmer
  • Johann Zmeskal
  • Nicola Zurlo
  • Massimiliano Antonello
Open Access
Regular Article

Abstract

We describe a multi-step “rotating wall” compression of a mixed cold antiproton–electron non-neutral plasma in a 4.46 T Penning–Malmberg trap developed in the context of the AEḡIS experiment at CERN. Such traps are routinely used for the preparation of cold antiprotons suitable for antihydrogen production. A tenfold antiproton radius compression has been achieved, with a minimum antiproton radius of only 0.17 mm. We describe the experimental conditions necessary to perform such a compression: minimizing the tails of the electron density distribution is paramount to ensure that the antiproton density distribution follows that of the electrons. Such electron density tails are remnants of rotating wall compression and in many cases can remain unnoticed. We observe that the compression dynamics for a pure electron plasma behaves the same way as that of a mixed antiproton and electron plasma. Thanks to this optimized compression method and the high single shot antiproton catching efficiency, we observe for the first time cold and dense non-neutral antiproton plasmas with particle densities n ≥ 1013 m−3, which pave the way for an efficient pulsed antihydrogen production in AEḡIS.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    M. Amoretti et al., Nature 419, 456 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    G. Gabrielse et al., Phys. Rev. Lett. 89, 213401 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    M. Doser et al., Class. Quantum Grav. 29, 184009 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    P. Perez, Y. Sacquin, Class. Quantum Grav. 29, 184008 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    E. Widmann et al., Hyperfine Interact. 215, 1 (2013) ADSCrossRefGoogle Scholar
  6. 6.
    M. Ahmadi et al., Nature 541, 506 (2017) ADSCrossRefGoogle Scholar
  7. 7.
    M. Amoretti et al., Phys. Lett. A 360, 141 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    J. Fajans et al., Phys. Rev. Lett. 95, 155001 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    X.-P. Huang et al., Phys. Rev. Lett. 78, 875 (1997) ADSCrossRefGoogle Scholar
  10. 10.
    E.M. Hollmann, F. Anderegg, C.F. Driscoll, Phys. Plasmas 7, 2776 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    J.R. Danielson, C.M. Surko, T.M. O’Neil, Phys. Rev. Lett. 99, 135005 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    G.B. Andresen et al., Phys. Rev. Lett. 100, 203401 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    D. Krasnický et al., AIP Conf. Proc. 1521, 144 (2013) ADSCrossRefGoogle Scholar
  14. 14.
    B.R. Beck, J. Fajans, J.H. Malmberg, Phys. Plasmas 3, 1250 (1996) ADSCrossRefGoogle Scholar
  15. 15.
    D.H.E. Dubin, T.M. O’Neil, Rev. Mod. Phys. 71, 87 (1999) ADSCrossRefGoogle Scholar
  16. 16.
    T.M. O’Neil, Phys. Fluids 24, 1447 (1981) ADSCrossRefGoogle Scholar
  17. 17.
    B.M. Jelenković et al., Phys. Rev. A 67, 063406 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    G. Gabrielse et al., Phys. Rev. Lett. 105, 213002 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    R.L. Spencer, S.N. Rasband, R.R. Vanfleet, Phys. Fluids B 5, 4267 (1993) ADSCrossRefGoogle Scholar
  20. 20.
    J.R. Danielson, C.M. Surko, Phys. Rev. Lett. 94, 035001 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    B.P. Cluggish, J.R. Danielson, C.F. Driscoll, Phys. Rev. Lett. 81, 353 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    G.B. Andresen et al., Phys. Rev. Lett. 106, 145001 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    D.H.E. Dubin, AIP Conf. Proc. 1521, 26 (2013) ADSCrossRefGoogle Scholar
  24. 24.
    A.A. Kabantsev, K.A. Thompson, C.F. Driscoll, AIP Conf. Proc. 1928, 020008 (2018) CrossRefGoogle Scholar
  25. 25.
    M. Amoretti et al., Phys. Plasmas 13, 012308 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    A.A. Kabantsev, C.Y. Chim, T.M. O’Neil, C.F. Driscoll, Phys. Rev. Lett. 112, 115003 (2014) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Stefano Aghion
    • 1
    • 2
  • Claude Amsler
    • 3
  • Germano Bonomi
    • 4
    • 5
  • Roberto S. Brusa
    • 6
    • 7
  • Massimo Caccia
    • 2
    • 8
  • Ruggero Caravita
    • 9
    • 10
  • Fabrizio Castelli
    • 2
    • 11
  • Giovanni Cerchiari
    • 12
  • Daniel Comparat
    • 13
  • Giovanni Consolati
    • 1
    • 2
  • Andrea Demetrio
    • 14
  • Lea Di Noto
    • 9
    • 10
  • Michael Doser
    • 15
  • Craig Evans
    • 1
    • 2
  • Mattia Fanì
    • 9
    • 10
    • 15
  • Rafael Ferragut
    • 1
    • 2
  • Julian Fesel
    • 15
  • Andrea Fontana
    • 5
  • Sebastian Gerber
    • 15
  • Marco Giammarchi
    • 2
  • Angela Gligorova
    • 3
  • Francesco Guatieri
    • 6
    • 7
  • Stefan Haider
    • 15
  • Alexander Hinterberger
    • 15
  • Helga Holmestad
    • 16
  • Alban Kellerbauer
    • 12
  • Olga Khalidova
    • 15
  • Daniel Krasnický
    • 10
  • Vittorio Lagomarsino
    • 9
    • 10
  • Pierre Lansonneur
    • 17
  • Patrice Lebrun
    • 17
  • Chloé Malbrunot
    • 3
    • 15
  • Sebastiano Mariazzi
    • 6
    • 7
  • Johann Marton
    • 3
  • Victor Matveev
    • 18
    • 19
  • Zeudi Mazzotta
    • 2
    • 11
  • Simon R. Müller
    • 14
  • Giancarlo Nebbia
    • 20
  • Patrick Nedelec
    • 17
  • Markus Oberthaler
    • 14
  • Nicola Pacifico
    • 15
  • Davide Pagano
    • 4
    • 5
  • Luca Penasa
    • 6
    • 7
  • Vojtech Petracek
    • 21
  • Francesco Prelz
    • 2
  • Marco Prevedelli
    • 22
  • Benjamin Rienaecker
    • 15
  • Jacques Robert
    • 13
  • Ole M. Røhne
    • 16
  • Alberto Rotondi
    • 5
    • 23
  • Heidi Sandaker
    • 16
  • Romualdo Santoro
    • 2
    • 8
  • Lillian Smestad
    • 15
    • 24
  • Fiodor Sorrentino
    • 10
  • Gemma Testera
    • 10
  • Ingmari C. Tietje
    • 15
  • Eberhard Widmann
    • 3
  • Pauline Yzombard
    • 12
  • Christian Zimmer
    • 12
    • 15
    • 25
  • Johann Zmeskal
    • 3
  • Nicola Zurlo
    • 5
    • 26
  • Massimiliano Antonello
    • 2
    • 8
  1. 1.Politecnico of MilanoMilanoItaly
  2. 2.INFN MilanoMilanoItaly
  3. 3.Stefan Meyer Institute for Subatomic Physics, Austrian Academy of SciencesViennaAustria
  4. 4.Department of Mechanical and Industrial EngineeringUniversity of BresciaBresciaItaly
  5. 5.INFN PaviaPaviaItaly
  6. 6.Department of PhysicsUniversity of TrentoPovoItaly
  7. 7.TIFPA/INFN TrentoPovoItaly
  8. 8.Department of ScienceUniversity of InsubriaComoItaly
  9. 9.Department of PhysicsUniversity of GenovaGenovaItaly
  10. 10.INFN GenovaGenovaItaly
  11. 11.Department of PhysicsUniversity of MilanoMilanoItaly
  12. 12.Max Planck Institute for Nuclear PhysicsHeidelbergGermany
  13. 13.Laboratoire Aimé Cotton, Université Paris-Sud, ENS Cachan, CNRS, Université Paris-SaclayOrsay CedexFrance
  14. 14.Kirchhoff-Institute for Physics, Heidelberg UniversityHeidelbergGermany
  15. 15.Physics Department, CERNGeneva 23Switzerland
  16. 16.Department of PhysicsUniversity of OsloOsloNorway
  17. 17.Institute of Nuclear Physics, CNRS/IN2p3, University of Lyon 1VilleurbanneFrance
  18. 18.Institute for Nuclear Research of the Russian Academy of ScienceMoscowRussia
  19. 19.Joint Institute for Nuclear ResearchDubnaRussia
  20. 20.INFN PadovaPadovaItaly
  21. 21.Czech Technical University in PraguePrague 1Czech Republic
  22. 22.University of BolognaBolognaItaly
  23. 23.Department of PhysicsUniversity of PaviaPaviaItaly
  24. 24.The Research Council of NorwayLysakerNorway
  25. 25.Department of PhysicsHeidelberg UniversityHeidelbergGermany
  26. 26.Department of Civil EngineeringUniversity of BresciaBresciaItaly

Personalised recommendations