Gas-phase evolution of Ar/H2O and Ar/CH4 dielectric barrier discharge plasmas

  • Ruggero Barni
  • Claudia Riccardi
Regular Article
Part of the following topical collections:
  1. Topical Issue: Advances in Plasma Chemistry


We present some experimental results of an investigation aimed to hydrogen production with atmospheric pressure plasmas, based on the use of dielectric barrier discharges, fed with a high-voltage alternating signal at frequency 30–50 kHz, in mixtures of methane or water vapor diluted in argon. The plasma gas-phase of the discharge was investigated by means of optical and electrical diagnostics. The emission spectra of the discharges was measured with a wide band spectrometer and a photosensor module, based on a photomultiplier tube. A Rogowski coil allowed to measure the electric current flowing into the circuit and a high voltage probe was employed for evaluating the voltage at the electrodes. The analysis of the signals of voltage and current shows the presence of microdischarges between the electrodes in two alternating phases during the period of oscillation of the applied voltage. The hydrogen concentration in the gaseous mixture was measured too. Besides this experimental campaign, we present also results from a numerical modeling of chemical kinetics in the gas-phase of Ar/H2O and Ar/CH4 plasmas. The simulations were conducted under conditions of single discharge to study the evolution of the system and of fixed frequency repeated discharging. In particular in Ar/H2O mixtures we could study the evolution from early atomic dissociation in the discharge, to longer time scales, when chemical reactions take place producing an increase of the density of species such as OH, H2O2 and subsequently of H and H2. The results of numerical simulations provide some insights into the evolution happening in the plasma gas-phase during the hydrogen reforming process.

Graphical abstract


  1. 1.
    D. Huang, J. Jang, W. Tsai, W. Wu, Energy Procedia 88, 505 (2016) CrossRefGoogle Scholar
  2. 2.
    K. Mazloomi, C. Gomes, Renew. Sustain. Energy Rev. 16, 3024 (2012) CrossRefGoogle Scholar
  3. 3.
    S. Dutta, J. Ind. Eng. Chem. 20, 1148 (2014) CrossRefGoogle Scholar
  4. 4.
    C.J. Liu, B. Xue, B. Eliasson, F. He, Y. Li, G. Xu, Plasma Chem. Plasma Proc. 21, 301 (2001) CrossRefGoogle Scholar
  5. 5.
    Y.P. Raizer, Gas discharge physics (Springer, Berlin 1991) Google Scholar
  6. 6.
    U. Kogelschatz, Plasma Chem. Plasma Proc. 23, 1 (2003) CrossRefGoogle Scholar
  7. 7.
    A. Fridman, A. Chirokov, A. Gustol, J. Phys. D: Appl. Phys. 38, R1 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    F. Massines, N. Gherardi, A. Fornelli, S. Martin, Surf. Coat. Technol. 200, 1855 (2005) CrossRefGoogle Scholar
  9. 9.
    M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. Van Dijk, J.L. Zimmermann, New J. Phys. 11, 115012 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    V. Shapoval, E. Marotta, C. Ceretta, N. Konjevic, M. Ivkovic, M. Schiorlin, C. Paradisi, Plasma Proc. Polym. 11, 787 (2014) CrossRefGoogle Scholar
  11. 11.
    R. Barni, A. Quintini, M. Piselli, C. Riccardi, J. Appl. Phys. 103, 063302 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    R. Barni, C. Broggi, R. Benocci, C. Riccardi, Eur. Phys. J. Appl. Phys. 35, 135 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    R.A. Siliprandi, H.E. Roman, R. Barni, C. Riccardi, J. Appl. Phys. 104, 063309 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    R. Siliprandi, S. Zanini, E. Grimoldi, F. Fumagalli, R. Barni, C. Riccardi, Plasma Chem. Plasma Process. 31, 353 (2011) CrossRefGoogle Scholar
  15. 15.
    P.J. Chantry, J. Appl. Phys. 62, 1141 (1987) ADSCrossRefGoogle Scholar
  16. 16.
    M. Argueso, G. Roble, J. Sanz, Rev. Sci. Instrum. 76, 065107 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    I. Biganzoli, R. Barni, C. Riccardi, Rev. Sci. Instrum. 84, 016101 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    I. Biganzoli, R. Barni, C. Riccardi, A. Gurioli, R. Pertile, Plasma Sources Sci. Technol. 22, 025009 (2013) ADSCrossRefGoogle Scholar
  19. 19.
    U. Fantz, Plasma Sources Sci. Technol. 15, S137 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    R.W.B. Pearse, A.G. Gaydon, The identification of molecular spectra (Wiley, New York, 1976) Google Scholar
  21. 21.
    I. Biganzoli, R. Barni, C. Riccardi, J. Phys. D: Appl. Phys. 46, 025201 (2013) ADSCrossRefGoogle Scholar
  22. 22.
    F. Croccolo, R. Barni, S. Zanini, A. Palvarini, C. Riccardi, J. Phys. Conf. Ser. 100, 062023 (2008) CrossRefGoogle Scholar
  23. 23.
    D Mariotti, Y. Shimizu, T. Sasaki, N. Koshizaki, Appl. Phys. Lett. 89, 201502 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    C.D. Pintassilgo, J. Loureiro, V. Guerra, J. Phys. D: Appl. Phys. 38, 417 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    G.I. Font, W.L. Morgan, G. Mennenga, J. Appl. Phys. 91, 3530 (2002) ADSCrossRefGoogle Scholar
  26. 26.
    R. Barni, P. Esena, C. Riccardi, J. Appl. Phys. 97, 073301 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    C. Riccardi, R. Barni, M. Fontanesi, P. Tosi, Chem. Phys. Lett. 392, 66 (2000) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica Occhialini, Universitá degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations