Studies on probe measurements in presence of magnetic field in dust containing hydrogen plasma

  • Deiji Kalita
  • Bharat Kakati
  • Siddhartha Sankar Kausik
  • Bipul Kumar Saikia
  • Mainak Bandyopadhyay
Regular Article
  • 28 Downloads

Abstract

The accuracy of plasma parameters measured by Langmuir probe in presence of magnetic field is studied in our present work. It is observed that the ratio of electron to ion saturation current shows almost identical behavior with that of unmagnetized hydrogen plasma when r L > 10r p (here r L : Larmor radius and r p : probe radius). At magnetic field strength, B = 594 gauss, the electron temperature (T e ) shows an overestimated value up to ~35–40%, whereas at B ≤ 37 gauss, T e shows around ≤10% overestimated value w.r.t. unmagnetized case. A bi-Maxwellian electron energy probability function is observed for entire magnetic field range for both pristine and dust containing hydrogen plasma. The bulk (cold) electron collection by the Langmuir probe is strongly suppressed whereas the higher energetic electron collection remains unaffected in presence of magnetic field. In presence of dust grains, it is found that the low energy electron population decreases even more than the magnetized plasma and the high-energy tail slightly increases compared to the pristine plasma.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    K. Tsv Popov, P. Ivanov, M. Dimitrova, J. Kovacic, T. Gyergyek, M. Cercek, Plasma Sources Sci. Technol. 21, 025004 (2012) ADSCrossRefGoogle Scholar
  2. 2.
    H. Li, Measurements of electron energy distribution function and neutral gas temperature in an inductively coupled plasma, Ph.D. thesis, University of Saskatchewan, Saskatoon, 2006, Available at: http://www.collectionscanada.gc.ca/obj/s4/f2/dsk3/SSU/TC-SSU-08292006134121.pdf
  3. 3.
    R. Fischer, V. Dose, Plasma Phys. Control. Fusion 41, 1109 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    A. Aanesland, J. Bredin, P. Chabert, V. Godyak, Appl. Phys. Lett. 100, 044102 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    K. Takahashi, C. Charles, R.W. Boswell, T. Kaneko, R. Hatakeyama, Phys. Plasmas 14, 114503 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    C.M. Samuell, B.D. Blackwell, J. Howard, C.S. Corr, Phys. Plasmas 20, 034502 (2013) ADSCrossRefGoogle Scholar
  7. 7.
    V. Godyak, B. Alexandrovich, Appl. Phys. Lett. 84, 1468 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    V.A. Godyak, V.I. Demidov, J. Phys. D: Appl. Phys. 44, 233001 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    J.S. Yoon, M.Y. Song, J.M. Han, S.H. Hwang, W. Chang, B. Lee, Y. Itikawa, J. Phys. Chem. 2, 913 (2008) Google Scholar
  10. 10.
    H. Rau, F. Picht, J. Phys. D: Appl. Phys. 26, 1260 (1993) ADSCrossRefGoogle Scholar
  11. 11.
    C.R. Koemtzopoulos, D.J. Economou, R. Pollard, Diam. Relat. Mater. 2, 25 (1993) ADSCrossRefGoogle Scholar
  12. 12.
    L. St-Onge, M. Moisan, Plasma Chem. Plasma Process. 14, 87 (1994) CrossRefGoogle Scholar
  13. 13.
    J.Y. Liu, Y. Gao, G. Wang, Pramana J. Phys. 79, 113 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    I. Denysenkoa, M.Y. Yu, K. Ostrikov, N.A. Azarenkov, L. Stenflo, Phys. Plasmas 11, 4959 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    K. Ostrikov, I. Denysenko, M. Yu, S. Xu, J. Plasma Phys. 71, 217 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    B. Kakati, D. Kalita, S.S. Kausik, M. Bandyopadhyay, B.K. Saikia, Phys. Plasmas 21, 083704 (2014) ADSCrossRefGoogle Scholar
  17. 17.
    I. Djermanov, St. Kolev, St. Lishev, A. Shivarova, T.S. Tsankov, J. Phys. Conf. Ser. 63, 012021 (2007) CrossRefGoogle Scholar
  18. 18.
    V.I. Demidov, S.V. Ratynskaia, K. Rypdal, Rev. Sci. Instrum. 73, 3409 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    K.Tsv. Popov, M. Dimitrova, P. Ivanova, J. Kovaèiè, T. Gyergyek, R. Dejarnac, J. Stöckel, M.A. Pedrosa, D. Lopez-Bruna, C. Hidalgo, Plasma Sources Sci. Technol. 25, 033001 (2016) ADSCrossRefGoogle Scholar
  20. 20.
    S. Jachmich, Single Langmuir probe characteristics in a magnetized plasma at the text tokamak, Ph.D. thesis, The University of Texas at Austin, 1995 Google Scholar
  21. 21.
    M. Tich, P. Kudrna, J.F. Behnke, C. Csambal, S. Klagge, J. Phys. IV Colloq. 7, 397 (1997) Google Scholar
  22. 22.
    D. Bohm, E.H.S. Durhop, H.S.W. Massey, Characteristics of electrical discharges in magnetic fields, edited by A. Guthrie, R.K. Wakerling (Mc-Graw Hill, New York, 1949) Google Scholar
  23. 23.
    P.C. Stangeby, J. Phys. D 15, 1007 (1982) ADSCrossRefGoogle Scholar
  24. 24.
    J.A. Tagle, P.C. Stangeby, S.K. Erent, Plasma Phys. Control. Fusion 29, 297 (1987) ADSCrossRefGoogle Scholar
  25. 25.
    B. Kakati, S.S. Kausik, M. Bandyopadhyay, B.K. Saikia, Y.C. Saxena, J. Appl. Phys. 116, 163302 (2014) ADSCrossRefGoogle Scholar
  26. 26.
    G.J.H. Brussaard, M. van der Steen, M. Carrere, M.C.M. van de Sanden, D.C. Schram, Phys. Rev. E 54, 1906 (1996) ADSCrossRefGoogle Scholar
  27. 27.
    R.A. Pitts, P.C. Stangeby, Plasma Phys. Control. Fusion 32, 1237 (1990) ADSCrossRefGoogle Scholar
  28. 28.
    F.S. Roudaki, A. Salar Elahi, M. Ghoran Neviss, J. Fusion Energy 34, 911 (2015) CrossRefGoogle Scholar
  29. 29.
    E.I. Toader, Plasma Sources Sci. Technol. 13, 646 (2004) CrossRefGoogle Scholar
  30. 30.
    E. Abdel-Fattah, M. Bazavan, H. Sugai, Phys. Plasmas 19, 113503 (2012) ADSCrossRefGoogle Scholar
  31. 31.
    J.D. Swift, Proc. Phys. Soc. 79, 697 (1962) ADSCrossRefGoogle Scholar
  32. 32.
    Yu.B. Golubovsky, V.M. Zakharova, V.I. Pasunkin, L.D. Tsendin, Sov. J. Plasma Phys. 7, 340 (1981) Google Scholar
  33. 33.
    R.R. Arslanbekov, N.A. Khromov, A.A. Kudryavtsev, Plasma Sources Sci. Technol. 3, 528 (1994) ADSCrossRefGoogle Scholar
  34. 34.
    M. Abramowitz, I.A. Stegun, Handbook of mathematical functions (Dover, New York, 1972) Google Scholar
  35. 35.
    V.I. Demidov, S.V. Ratynskaia, J. Armstrong, K. Rypdal, Phys. Plasmas 6, 350 (1999) ADSCrossRefGoogle Scholar
  36. 36.
    V.I. Demidov, S.V. Ratynskaia, K. Rypdal, Contrib. Plasma Phys. 41, 443 (2001) ADSCrossRefGoogle Scholar
  37. 37.
    Z . Chen, V.M. Donnelly, D.J. Economou, L. Chen, M. Funk, R. Sundararajan, J. Vac. Sci. Technol. A 27, 1159 (2009) CrossRefGoogle Scholar
  38. 38.
    V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, Plasma Sources Sci. Technol. 11, 525 (2002) ADSCrossRefGoogle Scholar
  39. 39.
    S. Roy, B.P. Pandey, Element based hydrodynamic sheath model, in 33rd Plasma Dynamics and Lasers Conference, Maui, Hawaii (2002) Google Scholar
  40. 40.
    J.T. Gudmundsson, M.A. Lieberman, Plasma Sources Sci. Technol. 65, 40 (1997) Google Scholar
  41. 41.
    N.V. Novakoviæ, S.M. Stojikoviæ, D.Z. Gajiæ, Facta Univ. Ser. Phys. Chem. Technol. 3, 1 (2004) CrossRefGoogle Scholar
  42. 42.
    N.S.J. Braithwaite, Pure Appl. Chem. 62, 1721 (1990) CrossRefGoogle Scholar
  43. 43.
    H. Singh, D.B. Graves, J. Appl. Phys. 87, 4098 (2000) ADSCrossRefGoogle Scholar
  44. 44.
    H. Singh, D.B. Graves, J. Appl. Phys. 88, 3889 (2000) ADSCrossRefGoogle Scholar
  45. 45.
    N. Skoro, N. Puac, S. Lazovic, U. Cvelbar, G. Kokkoris, E. Gogolides, J. Phys. D: Appl. Phys. 46, 475206 (2013) ADSCrossRefGoogle Scholar
  46. 46.
    I. Denysenko, M.Y. Yu, K. Ostrikov, A. Smolyakov, Phys. Rev. E 70, 046403 (2004) ADSCrossRefGoogle Scholar
  47. 47.
    I. Denysenko, M.Y. Yu, S. Xu, J. Phys. D: Appl. Phys. 38, 403 (2005) ADSCrossRefGoogle Scholar
  48. 48.
    B. Kakati, S.S. Kausik, B.K. Saikia, M. Bandyopadhyay, Phys. Plasmas 18, 033705 (2011) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Deiji Kalita
    • 1
  • Bharat Kakati
    • 2
  • Siddhartha Sankar Kausik
    • 1
  • Bipul Kumar Saikia
    • 1
  • Mainak Bandyopadhyay
    • 2
  1. 1.Centre of Plasma Physics-IPRKamrupIndia
  2. 2.Institute for Plasma ResearchGandhinagarIndia

Personalised recommendations