Advertisement

Molecular oxygen adsorption and dissociation on Au12M clusters with M = Cu, Ag or Ir

  • Laura M. Jiménez-Díaz
  • Luis A. Pérez
Regular Article

Abstract

In this work, we present a density functional theory study of the structural and electronic properties of isolated neutral clusters of the type Au12M, with M = Cu, Ag, or Ir. On the other hand, there is experimental evidence that gold-silver, gold-copper and gold-iridium nanoparticles have an enhanced catalytic activity for the CO oxidation reaction. In order to address these phenomena, we also performed density functional calculations of the adsorption and dissociation of O2 on these nanoparticles. Moreover, to understand the effects of Cu, Ag, and Ir impurity atoms on the dissociation of O2, we also analyze this reaction in the corresponding pure gold cluster. The results indicate that the substitution of one gold atom in a Au13 cluster by Ag, Cu or Ir diminishes the activation energy barrier for the O2 dissociation by nearly 1 eV. This energy barrier is similar for Au12Ag and Au12Cu, whereas for Au12Ir is even lower. These results suggest that the addition of other transition metal atoms to gold nanoclusters can enhance their catalytic activity towards the CO oxidation reaction, independently of the effect that the substrate could have on supported nanoclusters.

Graphical abstract

Keywords

Clusters and Nanostructures 

References

  1. 1.
    M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 16, 405 (1987) CrossRefGoogle Scholar
  2. 2.
    M. Valden, X. Lai, D.W. Goodman, Science 281, 1647 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    M. Haruta, T. Kobayashi, S. Iijima, J. Catal. 115, 301 (1989) CrossRefGoogle Scholar
  4. 4.
    A. Knell, P. Barnickel, A. Baiker, A. Wokaun, J. Catal. 137, 306 (1992) CrossRefGoogle Scholar
  5. 5.
    M. Okumura, T. Akita, M. Haruta, X. Wang, O. Kajikawa, O. Okada, Appl. Catal. B 41, 43 (2003) CrossRefGoogle Scholar
  6. 6.
    A. Gómez-Cortés, G. Díaz, R. Zanella, H. Ramírez, P. Santiago, J.M. Saniger, J. Phys. Chem. C 113, 9710 (2009) CrossRefGoogle Scholar
  7. 7.
    X. Bokhimi, R. Zanella, C. Angeles-Chávez, J. Phys. Chem. C 114, 14101 (2010) CrossRefGoogle Scholar
  8. 8.
    X. Liu, A. Wang, T. Zhang, D.S. Su, C.Y. Mou, Catal. Today 160, 103 (2011) CrossRefGoogle Scholar
  9. 9.
    L. Li, C. Wang, X. Ma, Z. Yang, X. Lu, Chin. J. Catal. 33, 1778 (2012) CrossRefGoogle Scholar
  10. 10.
    A. Sandoval, C. Louis, R. Zanella, Appl. Catal. B 140–141, 363 (2013) CrossRefGoogle Scholar
  11. 11.
    A. Sandoval, A. Aguilar, C. Louis, A. Traverse, R. Zanella, J. Catal. 281, 40 (2011) CrossRefGoogle Scholar
  12. 12.
    X. Bokhimi, R. Zanella, V. Maturano, A. Morales, Mater. Chem. Phys. 138, 490 (2013) CrossRefGoogle Scholar
  13. 13.
    A.Q. Wang, J.H. Liu, S.D. Lin, T.S. Lin, C.Y. Mou, J. Catal.283, 186 (2005) CrossRefGoogle Scholar
  14. 14.
    S.M. Lang, T.M. Bernhardt, Phys. Chem. Chem. Phys. 14, 9255 (2012) CrossRefGoogle Scholar
  15. 15.
    B. Yoon, H. Hakkinen, U. Landman, J. Phys. Chem. A 107, 4066 (2003) CrossRefGoogle Scholar
  16. 16.
    H. Qian, D.E. Jiang, G. Li, C. Gayathri, A. Das, R.R. Gil, R. Jin, J. Am. Chem. Soc. 134, 16159 (2012) CrossRefGoogle Scholar
  17. 17.
    J. Wang, G. Wang, J. Zhao, Phys. Rev. B 66, 035418 (2002) ADSCrossRefGoogle Scholar
  18. 18.
    E.M. Fernández, J.M. Soler, I.L. Garzón, L.C. Balbás, Phys. Rev. B 70, 165403 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    J. Sun, X. Xie, B. Cao, H. Duan, Comput. Theor. Chem. 1107, 127 (2017) CrossRefGoogle Scholar
  20. 20.
    K. Michaelian, Chem. Phys. Lett. 293, 202 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    K. Michaelian, N. Rendón, I.L. Garzón, Phys. Rev. B 60, 2000 (1999) ADSCrossRefGoogle Scholar
  22. 22.
    F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993) ADSCrossRefGoogle Scholar
  23. 23.
    P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009) Google Scholar
  24. 24.
    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    M.P. Johansson, A. Lechtken, D. Schooss, M.M. Kappes, F. Furche, Phys. Rev. A 77, 053202 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    M.D. Morse, Chem. Rev. 86, 1049 (1986) CrossRefGoogle Scholar
  27. 27.
    G. Henkelman, G. Jóhannesson, H. Jónsson, in Theoretical methods in condensed phase chemistry, edited by S.D. Schwartz (Springer, Dordrecht, 2002), pp. 269–302 Google Scholar
  28. 28.
    G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113, 9901 (2000) ADSCrossRefGoogle Scholar
  29. 29.
    H. Sekhar De, S. Krishnamurty, S. Pal, J. Phys. Chem. C 114, 6690 (2010) CrossRefGoogle Scholar
  30. 30.
    G. Zanti, D. Peeters, Theor. Chem. Acc. 132, 1300 (2012) CrossRefGoogle Scholar
  31. 31.
    M. Gruber, G. Heimel, L. Romaner, J.L. Brédas, E. Zojer, Phys. Rev. B 77, 165411 (2008) ADSCrossRefGoogle Scholar
  32. 32.
    M. Amft, B. Johansson, N.V. Skorodumova, J. Chem. Phys. 136, 024312 (2012) ADSCrossRefGoogle Scholar
  33. 33.
    J.P.K. Doye, D.J. Wales, New J. Chem. 22, 733 (1998) CrossRefGoogle Scholar
  34. 34.
    C.M. Chang, M.Y. Chou, Phys. Rev. Lett. 93, 133401 (2004) ADSCrossRefGoogle Scholar
  35. 35.
    R.C. Longo, L.J. Gallego, Phys. Rev. B 74, 193409 (2006) ADSCrossRefGoogle Scholar
  36. 36.
    J.M. Soler, E. Artacho, J.D.G. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002) ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Física, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations