Simple method for determining fullerene negative ion formation

Regular Article
  • 22 Downloads
Part of the following topical collections:
  1. Topical Issue: Low Energy Positron and Electron Interactions

Abstract

A robust potential wherein is embedded the crucial core-polarization interaction is used in the Regge-pole methodology to calculate low-energy electron elastic scattering total cross section for the C60 fullerene in the electron impact energy range 0.02 ≤ E ≤ 10.0 eV. The energy position of the characteristic dramatically sharp resonance appearing at the second Ramsauer–Townsend minimum of the total cross section representing stable C60 fullerene negative ion formation agrees excellently with the measured electron affinity of C60 [Huang et al., J. Chem. Phys. 140, 224315 (2014)]. The benchmarked potential and the Regge-pole methodology are then used to calculate electron elastic scattering total cross sections for selected fullerenes, from C54 through C240. The total cross sections are found to be characterized generally by Ramsauer–Townsend minima, shape resonances and dramatically sharp resonances representing long-lived states of fullerene negative ion formation. For the total cross sections of C70, C76, C78, and C84 the agreement between the energy positions of the very sharp resonances and the measured electron affinities is outstanding. Additionally, we compare our extracted energy positions of the resultant fullerene anions from our calculated total cross sections of the C86, C90 and C92 fullerenes with the estimated electron affinities ≥3.0 eV by the experiment [Boltalina et al., Rapid Commun. Mass Spectrom. 7, 1009 (1993)]. Resonance energy positions of other fullerenes, including C180 and C240 are also obtained. Most of the total cross sections presented in this paper are the first and only; our novel approach is general and should be applicable to other fullerenes as well and complex heavy atoms, such as the lanthanide atoms. We conclude with a remark on the catalytic properties of the fullerenes through their negative ions.

Graphical abstract

References

  1. 1.
    K. Kasdan, W.C. Lineberger, Phys. Rev. A 10, 1658 (1974) ADSGoogle Scholar
  2. 2.
    D.R. Bates, Adv. At. Mol. Opt. Phys. 27, 1 (1991) ADSGoogle Scholar
  3. 3.
    C. Blondel, Phys. Scr. T 58, 31 (1995) ADSGoogle Scholar
  4. 4.
    T. Andersen, Phys. Rep. 394, 157 (2004) ADSGoogle Scholar
  5. 5.
    D.J. Pegg, Rep. Prog. Phys. 67, 857 (2004) ADSGoogle Scholar
  6. 6.
    S.T. Buckman, C.W. Clark, Rev. Mod. Phys. 66, 539 (1994) ADSGoogle Scholar
  7. 7.
    M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, in Science of fullerenes and carbon nanotubes (Academic Press, Boston, MA, 1996) Google Scholar
  8. 8.
    Z. Felfli, A.Z. Msezane, D. Sokolovski, Nucl. Instrum. Methods Phys. Res. B 269, 1046 (2011) ADSGoogle Scholar
  9. 9.
    A.Z. Msezane, Z. Felfli, D. Sokolovski, J. Phys. B 41, 105201 (2008) ADSGoogle Scholar
  10. 10.
    S. Aubin, S. Myrskog, M.H.T. Extavour, L.J. LeBlanc, D. McKay, A. Stummer, J.H. Thywissen, Nat. Phys. 2, 384 (2006) Google Scholar
  11. 11.
    A.Z. Msezane, Z. Felfli, D. Sokolovski, J. Phys. B 43, 201001 (2010) ADSGoogle Scholar
  12. 12.
    O. Elhamidi, J. Pommier, R. Abouaf, J. Phys. B. 30, 4633 (1997) ADSGoogle Scholar
  13. 13.
    M. Lezius, P. Scheier, T.D. Märk, Chem. Phys. Lett. 203, 232 (1993) ADSGoogle Scholar
  14. 14.
    T. Jaffke, E. Illenberger, M. Lezius, S. Matejcik, D. Smith, T.D. Märk, Chem. Phys. Lett. 226, 213 (1994) ADSGoogle Scholar
  15. 15.
    J. Huang, H.S. Carman, R.N. Compton, J. Phys. Chem. 99, 1719 (1995) Google Scholar
  16. 16.
    W. Jaskólski, Phys. Rep. 271, 1 (1996) ADSGoogle Scholar
  17. 17.
    L.L. Lohr, S.M. Blinder, Chem. Phys. Lett. 198, 100 (1992) ADSGoogle Scholar
  18. 18.
    M.J. Pushka, R.M. Nieminen, Phys. Rev. A 47, 1181 (1993) ADSGoogle Scholar
  19. 19.
    M.Ya. Amusia, A.S. Baltenkov, B.G. Krakov, Phys. Lett. A 243, 99 (1998) ADSGoogle Scholar
  20. 20.
    J.P. Connerade, V.K. Dolmatov, P.A. Lakshmi, S.T. Manson, J. Phys. B: At. Mol. Opt. Phys. 32, L239 (1999) ADSGoogle Scholar
  21. 21.
    V.K. Dolmatov, A.S. Baltenkov, J.P. Connerade, S.T. Manson, Radiat. Phys. Chem. 70, 417 (2004) ADSGoogle Scholar
  22. 22.
    E.M. Nascimento, F.V. Prudente, M.N. Guimarães, A.M. Maniero, J. Phys. B: At. Mol. Opt. Phys. 44, 015003 (2011) ADSGoogle Scholar
  23. 23.
    C.Y. Lin, Y.K. Ho, J. Phys. B: At. Mol. Opt. Phys. 45, 145001 (2012) ADSGoogle Scholar
  24. 24.
    A.S. Baltenkov, Phys. Lett. A 254, 203 (1999) ADSGoogle Scholar
  25. 25.
    A.S. Baltenkov, A.Z. Msezane, Proc. Dyn. Syst. Appl. 7, 239 (2016) Google Scholar
  26. 26.
    M.Ya. Amusia, A.S. Baltenkov, U. Becker, Phys. Rev. A 62, 012701 (2000) ADSGoogle Scholar
  27. 27.
    M.Ya. Amusia, A.S. Baltenkov, L.V. Chernysheva, Z. Felfli, A.Z. Msezane, J. Phys. B 38, L169 (2005) ADSGoogle Scholar
  28. 28.
    A.S. Baltenkov, S.T. Manson, A.Z. Msezane, Phys. Rev. A 76, 042707 (2007) ADSGoogle Scholar
  29. 29.
    M.Ya. Amusia, L.V. Chernysheva, E.Z. Liverts, Phys. Rev. A 80, 032503 (2009) ADSGoogle Scholar
  30. 30.
    A.V. Korol, A.V. Solov’yov, J. Phys. B: At. Mol. Opt. Phys. 43, 201004 (2010) ADSGoogle Scholar
  31. 31.
    A.S. Baltenkov, U. Becker, S.T. Manson, A.Z. Msezane, J. Phys. B 43, 115102 (2010) ADSGoogle Scholar
  32. 32.
    M.Ya. Amusia, V.K. Dolmatov, L.V. Chernysheva, Phys. Rev. A 84, 063201 (2011) ADSGoogle Scholar
  33. 33.
    M.E. Madjet, H.S. Chakraborty, S.T. Manson, Phys. Rev. Lett. 99, 243003 (2007) ADSGoogle Scholar
  34. 34.
    M.E. Madjet, H.S. Chakraborty, J.M. Rost, S.T. Manson, J. Phys. B 41, 105101 (2008) ADSGoogle Scholar
  35. 35.
    O. Frank, J.M. Rost, Chem. Phys. Lett. 271, 367 (1997) ADSGoogle Scholar
  36. 36.
    Z. Chen, A.Z. Msezane, Phys. Rev. A 88, 043423 (2013) ADSGoogle Scholar
  37. 37.
    Z. Chen, A.Z. Msezane, Phys. Rev. A 89, 025401 (2014) ADSGoogle Scholar
  38. 38.
    Z. Chen, A.Z. Msezane, Eur. Phys. J. D 69, 88 (2015) ADSGoogle Scholar
  39. 39.
    A.L.D. Kilcoyne, Phys. Rev. Lett. 105, 213001 (2010) ADSGoogle Scholar
  40. 40.
    B. Li, G. O’Sullivan, C. Dong, J. Phys. B 46, 155203 (2013) ADSGoogle Scholar
  41. 41.
    V.K. Dolmatov, D.A. Keating, J. Phys.: Conf. Ser. 388, 022010 (2012) Google Scholar
  42. 42.
    T.W. Gorczyca, M.F. Hasoglu, S.T. Manson, Phys. Rev. A 86, 033204 (2012) ADSGoogle Scholar
  43. 43.
    R.A. Phaneuf, Phys. Rev. A 88, 053402 (2013) ADSGoogle Scholar
  44. 44.
    M.Ya. Amusia, L.V. Chernysheva, Phys. Rev. A 89, 057401 (2014) ADSGoogle Scholar
  45. 45.
    C. Winstead, V. McKoy, Phys. Rev. A 73, 012711 (2006) ADSGoogle Scholar
  46. 46.
    R.R. Lucchese, F.A. Gianturco, N. Sanna, Chem. Phys. Lett. 305, 413 (1999) ADSGoogle Scholar
  47. 47.
    F.A. Gianturco, R.R. Lucchese, N. Sanna, J. Phys. B 32, 2181 (1999) ADSGoogle Scholar
  48. 48.
    F.A. Gianturco, R.R. Lucchese, J. Chem. Phys. 111, 6769 (1999) ADSGoogle Scholar
  49. 49.
    F.A. Gianturco, G.Y. Kashenock, R.R. Lucchese, N. Sanna, J. Chem. Phys. 116, 2811 (2002) ADSGoogle Scholar
  50. 50.
    N. Ipatov, V.K. Ivanov, J.M. Pacheco, W. Ekardt, J. Phys. B 31, L5119 (1998) Google Scholar
  51. 51.
    V.K. Dolmatov, M.B. Cooper, M.E. Hunter, J. Phys. B: At. Mol. Opt. Phys. 47, 15002 (2014) Google Scholar
  52. 52.
    V.K. Dolmatov, C. Bayens, M.B. Cooper, M.E. Hunter, Phys. Rev. A 91, 062703 (2015) ADSGoogle Scholar
  53. 53.
    M.Ya. Amusia, L.V. Chernysheva, JETP 101, 503 (2015) Google Scholar
  54. 54.
    H. Tanaka, L. Boesten, K. Onda, O. Ohashi, J. Phys. Soc. Jpn 63, 485 (1994) ADSGoogle Scholar
  55. 55.
    O. Elhamidi, J. Pommier, R.J. Abouaf, Int. J. Mass. Spectr. 205, 17 (2001) Google Scholar
  56. 56.
    A. Baltenkov, S.T. Manson, A.Z. Msezane, J. Phys. B: At. Mol. Opt. Phys. 48, 185103 (2015) ADSGoogle Scholar
  57. 57.
    G. Schrange-Kashenock, J. Phys. B: At. Mol. Opt. Phys. 49, 185002 (2016) ADSGoogle Scholar
  58. 58.
    L.G. Gerchikov, A.V. Solov’yov, J.-P. Connerade, W. Greiner, J. Phys. B: At. Mol. Opt. Phys. 30, 4133 (1997) ADSGoogle Scholar
  59. 59.
    J.-P. Connerade, L.G. Gerchikov, A.N. Ipatov, A.V. Solov’yov, J. Phys. B: At. Mol. Opt. Phys. 32, 877 (1999) ADSGoogle Scholar
  60. 60.
    L.G. Gerchikov, A.N. Ipatov, A.V. Solov’yov, J. Phys. B: At. Mol. Opt. Phys. 30, 5939 (1997) ADSGoogle Scholar
  61. 61.
    A.N. Ipatov, J.-P. Connerade, L.G. Gerchikov, A.V. Solov’yov, J. Phys. B: At. Mol. Opt. Phys. 31, L27 (1998) Google Scholar
  62. 62.
    J.-P. Connerade, L.G. Gerchikov, A.N. Ipatov, S. Sentürk, J. Phys. B: At. Mol. Opt. Phys. 33, 5109 (2000) ADSGoogle Scholar
  63. 63.
    V.K. Ivanov, J. Phys. B: At. Mol. Opt. Phys. 32, R67 (1999) ADSGoogle Scholar
  64. 64.
    A.N. Ipatov, V.K. Ivanov, B.D. Agap’ev, W. Ekardt, J. Phys. B 31, 925 (1998) ADSGoogle Scholar
  65. 65.
    P. Descourt, M. Farine, C. Guet, J. Phys. B: At. Mol. Opt. Phys. 33, 4565 (2000) ADSGoogle Scholar
  66. 66.
    S.C. Frautschi, in Regge poles and S-matrix theory (Benjamin, New York, 1963), chapter X Google Scholar
  67. 67.
    V. de Alfaro, T. Regge, Potential scattering (Amsterdam, North-Holland, 1995) Google Scholar
  68. 68.
    Z. Felfli, A.Z. Msezane, D. Sokolovski, Phys. Rev. A 79, 012714 (2009) ADSGoogle Scholar
  69. 69.
    K.W. Thylwe, Eur. Phys. J. D 66, 7 (2012) ADSGoogle Scholar
  70. 70.
    H.P. Mulholland, Proc. Camb. Philos. Soc. (Lond.) 24, 280 (1928) ADSGoogle Scholar
  71. 71.
    J.H. Macek, P.S. Krstic, S.Y. Ovchinnikov, Phys. Rev. Lett. 93, 183202 (2004) ADSGoogle Scholar
  72. 72.
    D. Sokolovski, Z. Felfli, S.Y. Ovchinnikov, J.H. Macek, A.Z. Msezane, Phys. Rev. A 76, 012705 (2007) ADSGoogle Scholar
  73. 73.
    E.H. Lieb, B. Simon, Adv. Math. 23, 22 (1977) Google Scholar
  74. 74.
    E.H. Lieb, Rev. Mod. Phys. 48, 553 (1976) ADSGoogle Scholar
  75. 75.
    C.C. Tisdell, M. Holzer, Differ. Equ. Appl. 7, 27 (2015) MathSciNetGoogle Scholar
  76. 76.
    L.H. Thomas, Philos. Soc. 23, 542 (1928) Google Scholar
  77. 77.
    E. Fermi, Z. Phys. 48, 73 (1928) ADSGoogle Scholar
  78. 78.
    L.D. Landau, E.M. Lifshitz, Quantum mechanics: non-relativistic theory, 3rd edn. (Butterworth-Heinemann, Oxford, 1999), Vol. 3, p. 277 Google Scholar
  79. 79.
    S. Esposito, Am. J. Phys. 70, 851 (2002) ADSGoogle Scholar
  80. 80.
    L.N. Epele, H. Fanchiotti, C.A. García Canal, J.A. Ponciano, Phys. Rev. A 60, 280 (1999) ADSGoogle Scholar
  81. 81.
    Z. Felfli, S. Belov, N.B. Avdonina, M. Marletta, A.Z. Msezane, S.N. Naboko, in Proceedings of the Third International Workshop on Contemporary Problems in Mathematical Physics, J. Govaerts, M.N. Hounkonnou, A.Z. Msezane, eds. (World Scientific, Singapore, 2004), pp. 218–232 Google Scholar
  82. 82.
    T. Tietz, Z. Naturforsch 26a, 1054 (1971) ADSGoogle Scholar
  83. 83.
    S. Belov, N.B. Avdonina, M. Marletta, A.Z. Msezane, S.N. Naboko, J. Phys. A 37, 6943 (2004) ADSMathSciNetGoogle Scholar
  84. 84.
    N.B. Avdonina, S. Belov, Z. Felfli, A.Z. Msezane, S.N. Naboko, Phys. Rev. A 66, 022713 (2002) ADSMathSciNetGoogle Scholar
  85. 85.
    S. Belov, K.-E. Thylwe, M. Marletta, A.Z. Msezane, S.N. Naboko, J. Phys. A 43, 365301 (2010) MathSciNetGoogle Scholar
  86. 86.
    K.-E. Thylwe, P. McCabe, Eur. Phys. J. D 68, 323 (2014) ADSGoogle Scholar
  87. 87.
    P.G. Burke, C. Tate, Comput. Phys. Commun. 1, 97 (1969) ADSGoogle Scholar
  88. 88.
    J.N.L. Connor, J. Chem. Soc. Faraday Trans. 86, 1627 (1990) Google Scholar
  89. 89.
    W.R. Johnson, C. Guet, Phys. Rev. A 49, 1041 (1994) ADSGoogle Scholar
  90. 90.
    L.-S. Wang, J.J. Conceicao, C.M. Jin, R.E. Smalley, Chem. Phys. Lett. 182, 5 (1991) ADSGoogle Scholar
  91. 91.
    D.-L. Huang, P.D. Dau, H.-T. Liu, L.-S. Wang, J. Chem. Phys. 140, 224315 (2014) ADSGoogle Scholar
  92. 92.
    C. Brink, L.H. Andersen, P. Hvelplund, D. Mathur, J.D. Voldstad, Chem. Phys. Lett. 233, 52 (1995) ADSGoogle Scholar
  93. 93.
    X.-B. Wang, C.-F. Ding, L.-S. Wang, J. Chem. Phys. 110, 8217 (1999) ADSGoogle Scholar
  94. 94.
    X.B. Wang, H.K. Woo, L.S. Wang, J. Chem. Phys. 123, 051106 (2005) ADSGoogle Scholar
  95. 95.
    O.V. Boltalina, L.N. Sidorov, E.V. Sukhanova, E.V. Skokan, Rapid Commun. Mass Spectrom. 7, 1009 (1993) ADSGoogle Scholar
  96. 96.
    X.-B. Wang, H.-K. Woo, J. Yang, M.M. Kappes, L.S. Wang, J. Phys. Chem. C 111, 17684 (2007) Google Scholar
  97. 97.
    O.V. Boltalina, E.V. Dashkova, L.N. Sidorov, Chem. Phys. Lett. 256, 253 (1996) ADSGoogle Scholar
  98. 98.
    O.V. Boltalina, I.N. Ioffe, I.D. Sorokin, L.N. Sidorov, J. Phys. Chem. A 101, 9561 (1997) Google Scholar
  99. 99.
    L. Xu, W. Cai, X. Shao, Comput. Mater. Sci. 41, 522 (2008) Google Scholar
  100. 100.
    X.B. Wang, H.K. Woo, X. Huang, M.M. Kappes, L.S. Wang, Phys. Rev. Lett. 96, 143002 (2006) ADSGoogle Scholar
  101. 101.
    J.M. Cabrera-Trujillo, J.A. Alonso, M.P. Iniguez, M.J. López, A. Rubio, Phys. Rev. B 53, 16059 (1996) ADSGoogle Scholar
  102. 102.
    R.J. Tarento, P. Joyes, Z. Phys. D 37, 165 (1996) ADSGoogle Scholar
  103. 103.
    J.K. Edwards, A.F. Carley, A.A. Herzing, C.J. Kiely, G.J. Hutchings, J. Chem. Soc. Faraday Discuss. 138, 225 (2008) ADSGoogle Scholar
  104. 104.
    J.K. Edwards, B. Solsona, P. Landon, A.F. Carley, A. Herzing, M. Watanabe, C.J. Kiely, G.J. Hutchings, J. Mater. Chem. 15, 4595 (2005) Google Scholar
  105. 105.
    S.J. Freakley, Science 351, 959 (2016) ADSGoogle Scholar
  106. 106.
    Z. Felfli, A.Z. Msezane, J. Phys. Conf. Ser. 875, 062011 (2017) Google Scholar
  107. 107.
    E.T. Hoke, Adv. Energy Mater. 2, 1351 (2012) Google Scholar
  108. 108.
    V.G. Zakrzewski, O. Dolgounitcheva, J.V. Ortiz, J. Phys. Chem. A 118, 7424 (2014) Google Scholar
  109. 109.
    S. Nagase, K. Kabayashi, Chem. Phys. Lett. 228, 106 (1999) ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Center for Theoretical Studies of Physical SystemsClark Atlanta UniversityAtlantaUSA

Personalised recommendations