Floquet calculations for H2+ photoionization

Regular Article
  • 29 Downloads

Abstract

We present results of calculations of rates for ionization of the lowest electronic state of the H2+ ion by a continuous-wave laser field. We solve the coupled-channel Floquet equations in both length and velocity gauges using a pseudospectral method. We employ a complex absorbing potential to obtain Siegert-type solutions resulting in resonance positions and widths. We calculate generalized cross sections for one-, two-, and three-photon ionizations for various internuclear separations of the ion with intensity of I = 1.76 × 1012 W/cm2. This is the first time the Floquet technique combined with the complex absorbing potential has been employed for photoionization cross sections of the ion. We report on ionization rates of the ion for different internuclear distances with intensity of I = 5 × 1013 W/cm2. We also present two-photon ionization cross section for different internuclear distances with intensities of I = 1.76 × 1013 and 1.76 × 1014 W/cm2. We compare our findings from calculations carried out in both gauges with those of previous calculations.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    E.A. Hylleraas, Z. Phys. 71, 739 (1931) ADSCrossRefGoogle Scholar
  2. 2.
    G. Jaffé, Z. Phys. 87, 535 (1934) ADSCrossRefGoogle Scholar
  3. 3.
    W.G. Baber, H.R. Hassé, Proc. Camb. Philos. Soc. 31, 564 (1935) ADSCrossRefGoogle Scholar
  4. 4.
    K. Codling, L.J. Fransinski, J. Phys. B 26, 783 (1993) ADSCrossRefGoogle Scholar
  5. 5.
    A. Giusti-Suzor et al., J. Phys. B 28, 309 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    T.D.G. Walsh, L. Strach, S.L. Chin, J. Phys. B 31, 4853 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    R.M. Potvliege, R. Shakeshaft, Phys. Rev. A 40, 3061 (1989) ADSCrossRefGoogle Scholar
  8. 8.
    S.-I. Chu, Adv. Chem. Phys. 73, 739 (1989) Google Scholar
  9. 9.
    I. Ben-Itzhak et al., Phys. Rev. A 78, 063419 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    G.N. Gibson, M. Li, C. Guo, J. Neira, Phys. Rev. Lett. 79, 2022 (1997) ADSCrossRefGoogle Scholar
  11. 11.
    J.H. Posthumus et al., J. Phys. B 28, L349 (1995) CrossRefGoogle Scholar
  12. 12.
    T. Zuo, A.D. Bandrauk, Phys. Rev. A 52, R2511 (1995) ADSCrossRefGoogle Scholar
  13. 13.
    M. Plummer, J.F. McCann, J. Phys. B 29, 4625 (1996) ADSCrossRefGoogle Scholar
  14. 14.
    Z. Mulyukov, M. Pont, R. Shakeshaft, Phys. Rev. A 54, 4299 (1996) ADSCrossRefGoogle Scholar
  15. 15.
    L.B. Madsen, M. Plummer, J. Phys. B 31, 87 (1997) CrossRefGoogle Scholar
  16. 16.
    X. Chu, S.-I. Chu, Phys. Rev. A 63, 013414 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    A.D. Bandrauk, H.Z. Lu, Phys. Rev. A 62, 053406 (2000) ADSCrossRefGoogle Scholar
  18. 18.
    L.-Y. Peng et al., J. Chem. Phys. 120, 10046 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    Ts. Tsogbayar, M. Horbatsch, J. Phys. B 46, 085004 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    Ts. Tsogbayar, M. Horbatsch, J. Phys. B 46, 245005 (2013) ADSCrossRefGoogle Scholar
  21. 21.
    D.R. Bates, U. Öpik, J. Phys. B 1, 543 (1968) ADSCrossRefGoogle Scholar
  22. 22.
    J.A. Richards, F.P. Larkins, J. Phys. B 19, 1945 1986 Google Scholar
  23. 23.
    M. Plummer, J.F. McCann, J. Phys. B 28, 4073 (1995) ADSCrossRefGoogle Scholar
  24. 24.
    M. Baik, M. Pont, R. Shakeshaft, Phys. Rev. A 54, 1570 (1996) ADSCrossRefGoogle Scholar
  25. 25.
    A. Apalategui, A. Saenz, P. Lambropoulos, J. Phys. B 33, 2791 (2000) ADSCrossRefGoogle Scholar
  26. 26.
    H. Bachau, J. Phys. B 35, 509 (2002) ADSCrossRefGoogle Scholar
  27. 27.
    S. Barmaki, S. Laulan, Can. J. Phys. 88, 1 (2010) ADSCrossRefGoogle Scholar
  28. 28.
    J. Colgan, M.S. Pindzola, F. Robicheaux, Phys. Rev. A 68, 063413 (2003) ADSCrossRefGoogle Scholar
  29. 29.
    L. Tao, C.W. McCurdy, T.N. Rescigno, Phys. Rev. A 79, 012719 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    L. Tao, C.W. McCurdy, T.N. Rescigno, Phys. Rev. A 80, 013402 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    X. Guan, E.B. Secor, K. Bartschat, B.I. Schneider, Phys. Rev. A 84, 033420 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    X. Hou, L. Peng, Q.-Ch. Ning, Q. Gong, J. Phys. B 45, 074019 (2012) ADSCrossRefGoogle Scholar
  33. 33.
    X. Bian, Phys. Rev. A 90, 033403 (2014) ADSCrossRefGoogle Scholar
  34. 34.
    H.D. Cohen, U. Fano, Phys. Rev. 150, 30 (1966) ADSCrossRefGoogle Scholar
  35. 35.
    M. Brosolo, P. Decleva, A. Lisini, J. Phys. B 25, 3345 (1992) ADSCrossRefGoogle Scholar
  36. 36.
    M. Brosolo, P. Decleva, A. Lisini, Chem. Phys. 181, 85 (1994) ADSCrossRefGoogle Scholar
  37. 37.
    O.A. Fojón, A. Palacios, J. Fernández, R.D. Rivarola, F. Martin, Phys. Lett. A 350, 371 (2006) ADSCrossRefGoogle Scholar
  38. 38.
    S.I. Chu, W.P. Reinhardt, Phys. Rev. Lett. 39, 1195 (1977) ADSCrossRefGoogle Scholar
  39. 39.
    S.I. Chu, J. Chem. Phys. 75, 2215 (1981) ADSCrossRefGoogle Scholar
  40. 40.
    S.I. Chu, J. Chem. Phys. 94, 7901 (1991) ADSCrossRefGoogle Scholar
  41. 41.
    D.A. Telnov, J.Y. Wang, S.I. Chu, Phys. Rev. A 52, 3988 (1995) ADSCrossRefGoogle Scholar
  42. 42.
    D.A. Telnov, S.I. Chu, Chem. Phys. Lett. 255, 223 (1996) ADSCrossRefGoogle Scholar
  43. 43.
    X. Chu, S.I. Chu, Phys. Rev. A 63, 023411 (2001) ADSCrossRefGoogle Scholar
  44. 44.
    S.I. Chu, D.A. Telnov, Phys. Rep. 390, 1 (2004) ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Ts. Tsogbayar, M. Horbatsch, J. Phys. B 47, 115003 (2014) ADSCrossRefGoogle Scholar
  46. 46.
    F.H. Meis, A. Giusti-Suzor, K.C. Kulander, K.J. Schafer, in Super-intense laser-atom physics, edited by B. Piraux. (Plenum Press, New York, 1993) Google Scholar
  47. 47.
    G. Floquet, Ann. Ec. Norm. Suppl. 12, 47 (1883) Google Scholar
  48. 48.
    H. Sambe, Phys. Rev. A 7, 2203 (1973) ADSCrossRefGoogle Scholar
  49. 49.
    D. Funaro, Polynomial approximation of differential equations (Springer-Verlag, Berlin Heidelberg, 1992) Google Scholar
  50. 50.
    J.S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral methods for time-dependent problems (Cambridge University Press, Cambridge UK, 2007) Google Scholar
  51. 51.
    U.V. Riss, H.-D. Meyer, J. Phys. B 26, 4503 (1993) ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    R. Lefebvre, M. Sindelka, N. Moiseyev, Phys. Rev. A 72, 052704 (2005) ADSCrossRefGoogle Scholar
  53. 53.
    R. Santra, Phys. Rev. A 74, 034701 (2006) ADSCrossRefGoogle Scholar
  54. 54.
    E. Ackad, M. Horbatsch, Phys. Rev. A 76, 022503 (2007) ADSCrossRefGoogle Scholar
  55. 55.
    P. Lambropoulos, Adv. At. Mol. Phys. 12, 87 (1976) ADSCrossRefGoogle Scholar
  56. 56.
    C. Laughlin, S.-I. Chu, Phys. Rev. A 48, 4654 (1993) ADSCrossRefGoogle Scholar
  57. 57.
    Ts. Tsogbayar, J. Phys. B 42, 165007 (2009) ADSCrossRefGoogle Scholar
  58. 58.
    T.E. Sharp, At. Data 2, 119 (1971) ADSCrossRefGoogle Scholar
  59. 59.
    L.B. Madsen, M. Plummer, J. F. McCann, Phys. Rev. A 58, 456 (1998) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations