Advertisement

Phase modulation of atom waves: theory and experiment using the atom optics analogue of the Kerr effect

  • Boris Décamps
  • Jonathan Gillot
  • Alexandre Gauguet
  • Jacques Vigué
  • Matthias Büchner
Regular Article
  • 42 Downloads

Abstract

We have produced a phase modulation of a matter wave by applying a time-dependent perturbation. In the present study, the perturbation is the Stark effect produced by an electric field and, as this effect is quadratic in the applied field, this is the atom optics equivalent of the Kerr effect. In the present paper, we first develop an exact theory of phase modulation and we find results in agreement with a semiclassical calculation assuming a localized wavepacket. We then describe briefly our experimental setup which uses an atom interferometer to detect the phase modulations produced on its two arms which are spatially separated. The interferometer signal exhibits periodic oscillations, at the frequency of the modulation and its harmonics, when the same modulation frequency is applied on the two arms, and at the difference frequency and its harmonics when two different frequencies are used. All the experimental results are in very good agreement with theory.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    Ch.J. Bordé, in Atom interferometry, edited by P.R. Berman (Academic Press, San Diego, CA, 1997), p. 257 Google Scholar
  2. 2.
    H. Rauch, S. Werner, in Neutron interferometry, Oxford series on neutron scattering in condensed matter (Clarendon Press, Oxford, 2000), Vol. 12 Google Scholar
  3. 3.
    A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, Rev. Mod. Phys. 81, 1052 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    Atom interferometry, in Proceedings of the International School of Physics “Enrico Fermi”, edited by G.M. Tino, M.A. Kasevich (Società Italian di Fisica, Bologne, Italy, 2014) Google Scholar
  5. 5.
    F. Hasselbach, Rep. Prog. Phys. 73, 016101 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    M. Moshinsky, Phys. Rev. 88, 625 (1952) ADSCrossRefGoogle Scholar
  7. 7.
    J. Felber, G. Müller, R. Gähler, R. Golub, Physica B 162, 191 (1990) ADSCrossRefGoogle Scholar
  8. 8.
    Č. Brukner, A. Zeilinger, Phys. Rev. A 56, 3804 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    A. del Campo, G. Garca-Calderón, J. Muga, Phys. Rep. 476, 1 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    E. Torrontegui, J. Muñoz, Y. Ban, J.G. Muga, Phys. Rev. A 83, 043608 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    W.A. Hamilton, A.G. Klein, G.I. Opat, P.A. Timmins, Phys. Rev. Lett. 58, 2770 (1987) ADSCrossRefGoogle Scholar
  12. 12.
    A. Steane, P. Szriftgiser, P. Desbiolles, J. Dalibard, Phys. Rev. Lett. 74, 4972 (1995) ADSCrossRefGoogle Scholar
  13. 13.
    P. Szriftgiser, D. Guéry-Odelin, M. Arndt, J. Dalibard, Phys. Rev. Lett. 77, 4 (1996) ADSCrossRefGoogle Scholar
  14. 14.
    Y. Colombe, B. Mercier, H. Pérrin, V. Lorent, Phys. Rev. A 72, 061601(R) (2005) ADSCrossRefGoogle Scholar
  15. 15.
    J. Felber, R. Gälher, C. Rausch, R. Golub, Phys. Rev. A 53, 319 (1996) ADSCrossRefGoogle Scholar
  16. 16.
    A.I. Frank et al., Phys. Lett. A 311, 6 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    A.I. Frank et al., Nucl. Instrum. Methods Phys. Res. A 611, 314 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    I. Bloch, T.W. Hänsch, T. Esslinger, Nature 403, 166 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    T.D. Roberts, A.D. Cronin, M.V. Tiberg, D.E. Pritchard, Phys. Rev. Lett. 92, 060405 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    W.F. Holmgren, I. Hromada, C.E. Klauss, A.D. Cronin, New. J. Phys. 13, 115007 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    E.T. Smith et al., Phys. Rev. Lett. 81, 1996 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    R.A. Rubenstein et al., Phys. Rev. Lett. 82, 2018 (1999) ADSCrossRefGoogle Scholar
  23. 23.
    S. Bernet et al., Phys. Rev. Lett. 77, 5160 (1996) ADSCrossRefGoogle Scholar
  24. 24.
    S. Bernet et al., Phys. Rev. A 62, 023606 (2000) ADSCrossRefGoogle Scholar
  25. 25.
    B. Decamps, J. Gillot, A. Gauguet, J. Vigué, M. Büchner, Phys. Rev. Lett. 116, 053004 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    P. Storey, C. Cohen-Tannoudji, J. Phys. II 4, 1999 (1994) Google Scholar
  27. 27.
    W. Li, L.E. Reichl, Phys. Rev. B 60, 15732 (1999) ADSCrossRefGoogle Scholar
  28. 28.
    P.A. Martin, J. Phys. A: Math. Theor. 41, 015207 (2008) CrossRefGoogle Scholar
  29. 29.
    Digital Library of Mathematical Functions, equation 10.23.6 and 10.23.7, http://dlmf.nist.gov/10.23
  30. 30.
    H.T. Koelink, R.F. Swarttouw, J. Approx. Theory 87, 260 (1995) CrossRefGoogle Scholar
  31. 31.
    F. Pockels, Ueber den Einfluss des elektrostatischen Feldes auf das optische Verhalten piëzoelektrischer Krystalle, (Abhandlungen der mathematisch-physikalischen Klasse der Königlichen Gesellschaft der Wissenschaften zu Göttingen), Band 39 (1893) Google Scholar
  32. 32.
    J. Kerr, Philos. Mag. Ser. 4 50, 337 (1875) Google Scholar
  33. 33.
    M.-A. Bouchiat, C. Bouchiat, Rep. Prog. Phys. 60, 1351 (1997) ADSCrossRefGoogle Scholar
  34. 34.
    The ACME Collaboration, Science 343, 269 (2014) CrossRefGoogle Scholar
  35. 35.
    T. Fleig, M.N. Nayak, J. Mol. Spectrosc. 300, 16 (2014) ADSCrossRefGoogle Scholar
  36. 36.
    Z. Bialynicka-Birula, I. Bialynicka-Birula, Phys. Rev. D 2, 2341 (1970) ADSCrossRefGoogle Scholar
  37. 37.
    H. Euler, B. Kockel, Naturwissenschaften 23, 246 (1935) ADSCrossRefGoogle Scholar
  38. 38.
    A. Miffre, M. Jacquey, M. Büchner, G. Trénec, J. Vigué, Eur. Phys. J. D 33, 99 (2005) ADSCrossRefGoogle Scholar
  39. 39.
    A. Miffre, PhD thesis, Université P. Sabatier, 2011, http://tel.archives-ouvertes.fr/
  40. 40.
    S. Lepoutre, PhD thesis, Université P. Sabatier, 2011, http://tel.archives-ouvertes.fr/
  41. 41.
    J.P. Toennies, K. Winkelmann, J. Chem. Phys. 66, 3965 (1977) ADSCrossRefGoogle Scholar
  42. 42.
    D.R. Miller, in Atomic and molecular beam methods, edited by G. Scoles (Oxford University Press, Oxford, 1988) Google Scholar
  43. 43.
    M. Jacquey, A. Miffre, M. Büchner, G. Trénec, J. Vigué, Europhys. Lett. 77, 20007 (2007) ADSCrossRefGoogle Scholar
  44. 44.
    R. Delhuille, A. Miffre, E. Lavallette, M. Büchner, C. Rizzo, G. Trénec, J. Vigué, H.J. Loesch, J.P. Gauyacq, Rev. Sci. Instrum. 73, 2249 (2002) ADSCrossRefGoogle Scholar
  45. 45.
    S. Lepoutre, V.P.A. Lonij, H. Jelassi, G. Trénec, M. Büchner, A.D. Cronin, J. Vigué, Eur. Phys. J. D 62, 309 (2011) ADSCrossRefGoogle Scholar
  46. 46.
    S. Lepoutre, A. Gauguet, G. Trénec, M. Büchner, J. Vigué, Phys. Rev. Lett. 109, 120404 (2012) ADSCrossRefGoogle Scholar
  47. 47.
    J. Gillot, S. Lepoutre, A. Gauguet, M. Büchner, J. Vigué, Phys. Rev. Lett. 111, 030401 (2013) ADSCrossRefGoogle Scholar
  48. 48.
    S. Lepoutre, J. Gillot, A. Gauguet, G. Trénec, M. Büchner, J. Vigué, Phys. Rev. A 88, 043628 (2013) ADSCrossRefGoogle Scholar
  49. 49.
    M.S. Sorem, A.L. Schawlow, Opt. Commun. 5, 148 (1972) ADSCrossRefGoogle Scholar
  50. 50.
    G.N. Watson, A treatise on the theory of Bessel functions (Cambridge Mathematical Library, Cambridge, 1995) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratoire Collisions Agrégats Réactivité-IRSAMC, Université de Toulouse, CNRS, UMR 5589ToulouseFrance

Personalised recommendations