Advertisement

Searching for light dark matter through Positronium decay

  • Jesús Pérez-Ríos
  • Sherwin T. Love
Regular Article
  • 101 Downloads
Part of the following topical collections:
  1. Topical Issue: Low Energy Positron and Electron Interactions

Abstract

A novel approach to detect light dark matter through the observation of a single photon in the decay of Positronium (Ps) is proposed. Branching ratio calculations indicate that light dark matter coupling to the Standard Model through a novel dark vector boson in the mass range mA = 10–500 keV with strength ϵ = 2 × 10−5–10−8 is well above the previously computed Standard Model background decay Ps → γν̄ν and could be sensitive to observation.

Graphical abstract

References

  1. 1.
    N.A. Bahcall, PNAS 112, 12243 (2015) ADSCrossRefGoogle Scholar
  2. 2.
    D. Clowe, A. Gonzalez, M. Markevitch, Astrophys. J. 604, 596 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    D. Clowe, B. Maruša, A.H. Gonzalez, M. Markevitch, S.W. Randall, C. Jones, D. Zaritsky, Astrophys. J. 648, L109 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    M. Battaglieri et al., arXiv:1707.04591v1 (2017)
  5. 5.
    G. Bertone ed. Particle dark matter (Cambridge University Press, Cambridge, England, 2010) Google Scholar
  6. 6.
    J. Alexander et al., arXiv:1608.08632v1 (2016)
  7. 7.
    J. Vav’ra, Phys. Lett. B 736, 169 (2014) ADSCrossRefGoogle Scholar
  8. 8.
    B.M. Roberts, V.A. Dzuba, V.V. Flambaum, M. Pospelov, Y.V. Stadnik, Phys. Rev. D 109, 115037 (2016) ADSCrossRefGoogle Scholar
  9. 9.
    B.M. Roberts, V.V. Flambaum, G.F. Gribakin, Phys. Rev. Lett. 116, 023201 (2016) ADSCrossRefGoogle Scholar
  10. 10.
    R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, T. Volansky, Phys. Rev. Lett. 109, 021301 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    R. Essig, J. Mardon, T. Volansky, Phys. Rev. D 85, 076007 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    R. Essig, O. Mardon, O. Slone, T. Volansky, Phys. Rev. D 95, 056011 (2017) ADSCrossRefGoogle Scholar
  13. 13.
    L. Santamaria, C. Braggio, G. Carugno, V. Di Sarno, P. Maddaloni, G. Ruoso, New J. Phys. 17, 113025 (2015) ADSCrossRefGoogle Scholar
  14. 14.
    J. Pérez-Ríos, S.T. Love, J. Phys. B 48, 244009 (2015) ADSCrossRefGoogle Scholar
  15. 15.
    A. Pokraka, A. Czarnecki, Phys. Rev. D 94, 113012 (2016) ADSCrossRefGoogle Scholar
  16. 16.
    R. Essig, P. Schuster, N. Toro, Phys. Rev. D 80, 015003 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    M.E. Peskin, D.V. Shcroeder, An introduction to quantum field theory (Westview Press, Reading, MA, 1995) Google Scholar
  18. 18.
    C. Itzykson, J. Zuber, Quantum field theory (Dover, Mineola, NY, 2005) Google Scholar
  19. 19.
    T. Mitsui, R. Fujimoto, Y. Ishisaki, Y. Ueda, Y. Yamakazi, S. Asai, S. Orito, Phys. Rev. Lett. 70, 2265 (1993) ADSCrossRefGoogle Scholar
  20. 20.
    T. Mitsui, K. Maki, S. Asai, Y. Ishisaki, R. Fujimoto, N. Muramoto, T. Sato, Y. Ueda, Y. Yamakazi, S. Orito, Europhys. Lett. 33, 111 (1996) ADSCrossRefGoogle Scholar
  21. 21.
    A. Badertscher, P. Crivelli, M. Felcini, S.N. Gininenko, N.A. Goloubev, P. Nédélec, J.P. Peigneux, V. Postoev, A. Rubbia, D. Sillou, Phys. Lett. B 542, 29 (2002) ADSCrossRefGoogle Scholar
  22. 22.
    D. Banerjee et al., Phys. Rev. Lett. 118, 011802 (2017) ADSCrossRefGoogle Scholar
  23. 23.
    D. Banerjee et al., arXiv:1710.00971v1 (2017)
  24. 24.
    A. Badertscher, P. Crivelli, W. Fetscher, U. Gendotti, S.N. Gninenko, V. Postoev, A. Rubbia, V. Samoylenko, D. Sillou, Phys. Rev. D 75, 032004 (2007) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Natural Sciences and Technology, Universidad del TuraboGuraboUSA
  2. 2.Department of Physics and AstronomyPurdue UniversityWest LafayetteUSA

Personalised recommendations