Advertisement

Numerical prediction and measurement of optoacoustic signals generated in PVA-H tissue phantoms

  • Oliver Melchert
  • Elias Blumenröther
  • Merve Wollweber
  • Bernhard Roth
Regular Article

Abstract

We present numerical simulations of optoacoustic (OA) signals, complementing laboratory experiments on melanin doped polyvinyl alcohol hydrogel (PVA-H) tissue phantoms. We review the computational approach to model the underlying mechanisms, i.e. optical absorption of laser energy and acoustic propagation of mechanical stress, geared toward experiments that involve absorbing media with homogeneous acoustic properties. We apply the numerical procedure to predict signals observed in the acoustic near- and farfield in both, forward and backward detection mode, in PVA-H tissue phantoms (i.e. an elastic solid). Further, we report on verification tests of our research code based on OA experiments on dye solution (i.e. a liquid) detailed in the literature and benchmark our 3D procedure via limiting cases described in terms of effectively 1D theoretical approaches.

Graphical abstract

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    R.A. Kruger, P. Liu, Y. Fang, C.R. Appledorn, Med. Phys. 22, 1605 (1995) CrossRefGoogle Scholar
  2. 2.
    M.W. Sigrist, F.K. Kneubühl, J. Acoust. Soc. Am. 64, 1652 (1978) CrossRefADSGoogle Scholar
  3. 3.
    M.W. Sigrist, J. Appl. Phys. 60, R83 (1986) CrossRefADSGoogle Scholar
  4. 4.
    D.A. Hutchins, Can. J. Phys. 64, 1247 (1986) CrossRefADSGoogle Scholar
  5. 5.
    A.C. Tam, Rev. Mod. Phys. 58, 381 (1986) CrossRefADSGoogle Scholar
  6. 6.
    L.V. Wang, Photoacoustic imaging and spectroscopy (CRC Press, Taylor & Francis Group, Boca Raton, 2009) Google Scholar
  7. 7.
    S.S. Penner, O.P. Sharma, J. Appl. Phys. 37, 2304 (1966) CrossRefADSGoogle Scholar
  8. 8.
    G.J. Diebold, M.I. Khan, S.M. Park, Science 250, 101 (1990) CrossRefADSGoogle Scholar
  9. 9.
    G.J. Diebold, T. Sun, M.I. Khan, Phys. Rev. Lett. 67, 3384 (1991) CrossRefADSGoogle Scholar
  10. 10.
    A. Karabutov, N.B. Podymova, V.S. Letokhov, Appl. Phys. B 63, 545 (1996) CrossRefADSGoogle Scholar
  11. 11.
    C.G.A. Hoelen, F.F.M. de Mul, J. Acoust. Soc. Am., 106, 695 (1999) CrossRefADSGoogle Scholar
  12. 12.
    K. Chen, X. Fu, D.J. Dorantes-Gonzalez, Z. Lu, T. Li, Y. Li, S. Wu, X. Hu, J. Biomed. Opt. 19, 077007 (2014) CrossRefADSGoogle Scholar
  13. 13.
    S.L. Jacques, Photoacoustics 2, 137 (2014) CrossRefGoogle Scholar
  14. 14.
    E. Blumenröther, O. Melchert, M. Wollweber, B. Roth, Photoacoustics 4, 125 (2016) CrossRefGoogle Scholar
  15. 15.
    W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T.G. Van Leeuwen, S. Manohar, Biomed. Opt. 16, 075002 (2011) CrossRefGoogle Scholar
  16. 16.
    K. Zell, J.I. Sperl, M.W. Vogel, R. Niessner, C. Haisch, Phys. Med. Biol. 52, N475 (2007) CrossRefADSGoogle Scholar
  17. 17.
    M.G. González, P.A. Sorichetti, G.D. Santiago, Rev. Sci. Instrum. 85, 115005 (2014) CrossRefADSGoogle Scholar
  18. 18.
    O. Melchert, E. Blumenröther, M. Wollweber, B. Roth, arXiv:1703.05054 (2017)
  19. 19.
    G. Paltauf, H. Schmidt-Kloiber, J. Appl. Phys. 82, 1525 (1997) CrossRefADSGoogle Scholar
  20. 20.
    L. Wang, S.L. Jacques, L.Q. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995) CrossRefGoogle Scholar
  21. 21.
    E. Alerstam, W.C.Y. Lo, T.D. Han, J. Rose, S. Andersson-Engels, L. Lilge, Biomed. Opt. Express 1, 658 (2010) CrossRefGoogle Scholar
  22. 22.
    L. Wang, S.L. Jacques, L.Q. Zheng, Comput. Methods Programs Biomed. 54, 141 (1997) CrossRefGoogle Scholar
  23. 23.
    O. Melchert, M. Wollweber, B. Roth, arXiv:1611.02202 (2016)
  24. 24.
    N. Baddour, U. Chouinard, J. Open Res. Softw. 5, 4 (2017) CrossRefGoogle Scholar
  25. 25.
    S.L. Jacques, T. Li, Monte Carlo simulations of light transport in 3D heterogeneous tissues (mcxyz.c) (2013), http://omlc.org/software/mc/mcxyz/index.html [accessed: 2017/30/01]
  26. 26.
    C. Böcklin, D. Baumann, J. Fröhlich, J. Appl. Phys. 115, 064905 (2014) CrossRefADSGoogle Scholar
  27. 27.
    V.E. Gusev, A.A. Karabutov, Laser optoacoustics (American Institute of Physics, New York, 1993) Google Scholar
  28. 28.
    D.-K. Yao, C. Zhang, K. Maslov, L.V. Wang, J. Biomed. Opt. 19, 017007 (2014) CrossRefADSGoogle Scholar
  29. 29.
    H. Schoeffmann, H. Schmidt-Kloiber, E. Reichel, J. Appl. Phys. 63, 46 (1988) CrossRefADSGoogle Scholar
  30. 30.
    M. Jaeger, J.J. Niederhauser, M. Hejazi, M. Frenz, J. Biomed. Opt. 10, 024035 (2005) CrossRefADSGoogle Scholar
  31. 31.
    M. Terzić, M.W. Sigrist, J. Appl. Phys. 56, 93 (1984) CrossRefADSGoogle Scholar
  32. 32.
    M. Fonseca, B. Zeqiri, P.C. Beard, B.T. Cox, Phys. Med. Biol. 61, 4950 (2016) CrossRefGoogle Scholar
  33. 33.
    A. Kharine, S. Manohar, R. Seeton, R.G.M. Kolkman, R.A. Bolt, W. Steenbergen, F.F.M. deMul, Phys. Med. Biol. 48, 357 (2003) CrossRefGoogle Scholar
  34. 34.
    M. Meinhardt-Wollweber, C. Suhr, A.-K. Kniggendorf, B. Roth, Tissue phantoms for multimodal approaches: Raman spectroscopy and optoacoustics, in SPIE BiOS, SPIE Proceedings (SPIE, 2014), p. 89450B Google Scholar
  35. 35.
    J.J. Niederhauser, M. Jaeger, M. Hejazi, H. Keppner, M. Frenz, Opt. Commun. 253, 401 (2005) CrossRefADSGoogle Scholar
  36. 36.
    O. Melchert, PyPCPI – a python module for optoacoustic signal generation via polar convolution and Poisson integral evaluation (2016), https://github.com/omelchert/PCPI.git [accessed: 2017/15/02]
  37. 37.
    T.E. Oliphant, Comput. Sci. Eng. 9, 10 (2007) CrossRefGoogle Scholar
  38. 38.
    E. Jones, T.E. Oliphant, P. Peterson, SciPy: open source scientific tools for Python (2001), http://www.scipy.org/ [accessed: 2017/03/06]
  39. 39.
    T. Williams, C. Kelley, Gnuplot 5.0: an interactive plotting program (2015), http://gnuplot.sourceforge.net/ [accessed: 2017/03/06]
  40. 40.
    G. Paltauf, H. Schmidt-Kloiber, J. Appl. Phys. 88, 1624 (2000) CrossRefADSGoogle Scholar
  41. 41.
    G. Paltauf, H. Schmidt-Kloiber, H. Guss, Appl. Phys. Lett. 69, 152 (1996) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Oliver Melchert
    • 1
  • Elias Blumenröther
    • 1
  • Merve Wollweber
    • 1
  • Bernhard Roth
    • 1
  1. 1.Hanover Centre for Optical Technologies (HOT), Leibniz Universität HannoverHannoverGermany

Personalised recommendations