Advertisement

Antiproton-impact ionization of hydrogen atom with Yukawa interaction

  • Dragan JakimovskiEmail author
  • Tasko P. Grozdanov
  • Ratko K. Janev
Regular Article
  • 72 Downloads

Abstract

The process of ionization of hydrogen atom by antiproton impact is studied when the interparticle interactions in the system are described by screened interactions of Yukawa type. The collision dynamics is described by the semiclassical atomic-orbital close-coupling method in which the bound atomic states and positive energy continuum pseudostates are determined by diagonalization of target Hamiltonian in a sufficiently large even-tempered basis to ensure convergence of the results at each value of the screening length λ of the interaction. With decreasing the screening length, the bound states in the Yukawa potential become unbound, thus increasing the number of continuum pseudostates. At low collision energies, this leads to the increase of the ionization cross section. It is observed that the energies of pseudostates, generated by the exit of nl bound states in the continuum, at certain critical values λ nl c exhibit series of avoided crossings when λ is varied. The avoided crossings appear between the (n + k) l and (n + k + 1) l (n = 1, 2, 3, … ; k = 0, 1, 2, …) states at screening lengths close to the critical screening length λ nl c . The avoided crossings become increasingly less pronounced with increasing n, k and l. The matrix elements for the (n + k) l - (n + k + 1) l transitions at the avoided crossings λ x,(n+k)l (n+k+1)l exhibit maxima and are reflected in the structure of the cross sections for population of the lower nl pseudostates. These structures are, however, smeared out in the total ionization cross section.

Graphical abstract

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    P. Debye, E. Hückel, Phys. Z. 24, 185 (1923) Google Scholar
  2. 2.
    A.S. Eddington, Mon. Not. R. Astron. Soc. 86, 2 (1925) ADSCrossRefGoogle Scholar
  3. 3.
    A.S. Eddington, in The internal constitution of the stars (Dover, New York, 1959), pp. 263–269 Google Scholar
  4. 4.
    H. Yukawa, Proc. Mat. Phys. Soc. Jpn. 17, 48 (1935) Google Scholar
  5. 5.
    N. Bohr, K. Dansk, Vidensk. Selsk. Mat-Fys. Meddr. 18, 8 (1948) Google Scholar
  6. 6.
    S. Raimes, The wave mechanics of electrons in metals (Interscience, New York, 1961) Google Scholar
  7. 7.
    V.L. Bonch-Bruevich, V.B. Glasko, Sov. Phys. Solid State 2, 371 (1962) Google Scholar
  8. 8.
    J.P. Hansen, I.R. McDonald, Theory of simple fluids (Academic, London, 1986) Google Scholar
  9. 9.
    D. Salzman, Atomic physics in hot plasmas (Oxford Univ. Press, Oxford, 1998) Google Scholar
  10. 10.
    M.S. Murillo, J.C. Weisheit, Phys. Rep. 302, 1 (1998) ADSCrossRefGoogle Scholar
  11. 11.
    L. Ling, Y.Y. Qi, J.G. Wang, R.K. Janev, Atomic and molecular data and their applications (ICAMDATA-2008: 6th International Conference on Molecular Data and Their Applications), in AIP Conf. Proc. Series, edited by S.P. Zhu, J. Yan (AIP, Beijing, 2009), Vol. 1125, p. 58 Google Scholar
  12. 12.
    R.K. Janev, S.B. Zhang, J.G. Wang, Matter Radiat. Extreme 1, 237 (2016) CrossRefGoogle Scholar
  13. 13.
    T. Kirchner, H. Knudsen, J. Phys. B: At. Mol. Opt. Phys. 44, 122001 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    M.F. Ciappina, T.-G. Lee, M.S. Pindzola, J. Colgan, Phys. Rev. A 88, 042714 (2013) ADSCrossRefGoogle Scholar
  15. 15.
    I.B. Abdurakhmanov, A.S. Kadyrov, I. Bray, Phys. Rev. A 94, 022703 (2016) ADSCrossRefGoogle Scholar
  16. 16.
    A.I. Bondarev, Y.S. Kozhedub, I.I. Tupitsyn, V.M. Shabaev, G. Plunien, Th. Stöhlker, Phys. Rev. A 95, 052709 (2017) ADSCrossRefGoogle Scholar
  17. 17.
    E. Fermi, E. Teller, Phys. Rev. 72, 399 (1947) ADSCrossRefGoogle Scholar
  18. 18.
    P.S. Krstic, D.R. Schultz, R.K. Janev, J. Phys. B: At. Mol. Opt. Phys. 29, 1941 (1996) ADSCrossRefGoogle Scholar
  19. 19.
    J.C. Wells, D.R. Schultz, P. Gavras, M.S. Pindzola, Phys. Rev. A 54, 593 (1996) ADSCrossRefGoogle Scholar
  20. 20.
    I.B Abdurakhmanov, A.S. Kadyrov, I. Bray, A.T. Stelbovics, J. Phys. B: At. Mol. Opt. Phys. 44, 075204 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    L.D. Landau, E.M. Lifshitz, Quantum mechanics: non-relativistic theory (Pergamon, London, 1958) Google Scholar
  22. 22.
    F.J. Rogers, H.C. Graboske, D.J. Harwood, Phys. Rev. A 1, 1577 (1970) CrossRefGoogle Scholar
  23. 23.
    W. Fritsch, C.D. Lin, Phys. Rep. 202, 1 (1991) ADSCrossRefGoogle Scholar
  24. 24.
    B.H. Bransden, M.R.C. McDowell, Charge exchange and the theory of ion-atom collisions (Clarendon Press, Oxford, 1992) Google Scholar
  25. 25.
    N. Toshima, Phys. Rev. A 64, 024701 (2001) ADSCrossRefGoogle Scholar
  26. 26.
    C.M. Reeves, J. Chem. Phys. 39, 1 (1963) ADSCrossRefGoogle Scholar
  27. 27.
    J. Kuang, C.D. Lin, J. Phys. B: At Mol. Opt. Phys. 29, 1207 (1996) ADSCrossRefGoogle Scholar
  28. 28.
    J. Kuang, C.D. Lin, J. Phys. B: At. Mol. Opt. Phys. 29, 5443 (1996) ADSCrossRefGoogle Scholar
  29. 29.
    J. von Neumann, E.P. Wigner, Z. Phys. 30, 467 (1929) Google Scholar
  30. 30.
    P.S. Krstic, R.K. Janev, Phys. Rev. A 67, 022708 (2003) ADSCrossRefGoogle Scholar
  31. 31.
    H. Knudsen, U. Mikkelsen, K. Paludan et al., Phys. Rev. Lett. 74, 4627 (1995) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dragan Jakimovski
    • 1
    Email author
  • Tasko P. Grozdanov
    • 2
  • Ratko K. Janev
    • 3
  1. 1.Department of PhysicsSts Cyril and Methodius UniversitySkopjeMacedonia
  2. 2.Institute of Physics, University of BelgradeBelgradeSerbia
  3. 3.Macedonian Academy of Sciences and ArtsSkopjeMacedonia

Personalised recommendations