Advertisement

Two dimensional laser induced fluorescence in the gas phase: a spectroscopic tool for studying molecular spectroscopy and dynamics

  • Jason R. Gascooke
  • Warren D. Lawrance
Colloquium

Abstract

Two dimensional laser induced fluorescence (2D-LIF) extends the usual laser induced fluorescence technique by adding a second dimension, the wavelength at which excited states emit, thereby significantly enhancing the information that can be extracted. It allows overlapping absorption features, whether they arise from within the same molecule or from different molecules in a mixture, to be associated with their appropriate “parent” state and/or molecule. While the first gas phase version of the technique was published a decade ago, the technique is in its infancy, having been exploited by only a few groups to date. However, its potential in gas phase spectroscopy and dynamics is significant. In this article we provide an overview of the technique and illustrate its potential with examples, with a focus on those utilising high resolution in the dispersed fluorescence dimension.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    W.F. Reynolds, R.G. Enríquez, J. Nat. Prod. 65, 221 (2002) CrossRefGoogle Scholar
  2. 2.
    P. Giraudeau, L. Frydman, Annu. Rev. Anal. Chem. 7, 129 (2014) CrossRefGoogle Scholar
  3. 3.
    A.H. Kwan, M. Mobli, P.R. Gooley, G.F. King, J.P. Mackay, FEBS J. 278, 687 (2011) CrossRefGoogle Scholar
  4. 4.
    Coherent multidimensional optical spectroscopy (ACS Publication, 2009), Vol. 42, pp. 1207–1469 Google Scholar
  5. 5.
    L.K. Iwaki, D.D. Dlott, J. Phys. Chem. A 104, 9101 (2000) CrossRefGoogle Scholar
  6. 6.
    M. Cho, Chem. Rev. 108, 1331 (2008) CrossRefGoogle Scholar
  7. 7.
    P.C. Chen, Appl. Spectrosc. 70, 1937 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    D.M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    M.F. DeCamp, L.P. DeFlores, K.C. Jones, A. Tokmakoff, Opt. Express 15, 233 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    J.C. Dean, S. Rafiq, D.G. Oblinsky, E. Cassette, C.C. Jumper, G.D. Scholes, J. Phys. Chem. A 119, 9098 (2015) CrossRefGoogle Scholar
  11. 11.
    K. Matthíasson, H. Wang, Á. Kvaran, J. Mol. Spectrosc. 255, 1 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    G. Weber, Nature 190, 27 (1961) ADSCrossRefGoogle Scholar
  13. 13.
    I.M. Warner, J.B. Callis, E.R. Davidson, G.D. Christian, Clin. Chem. 22, 1483 (1976) Google Scholar
  14. 14.
    H. Anzai, N.K. Joshi, M. Fuyuki, A. Wada, Rev. Sci. Instrum. 86, 014101 (2015) ADSCrossRefGoogle Scholar
  15. 15.
    C.S. Parmenter, M.W. Schuyler, J. Chem. Phys. 52, 5366 (1970) ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Blondeau, M. Stockburger, Ber. Bunsenges. Phys. Chem. 75, 450 (1971) CrossRefGoogle Scholar
  17. 17.
    C.S. Parmenter, Adv. Chem. Phys. 22, 365 (1972) Google Scholar
  18. 18.
    A.E.W. Knight, C.S. Parmenter, M.W. Schuyler, J. Am. Chem. Soc. 97, 1993 (1975) CrossRefGoogle Scholar
  19. 19.
    N.J. Reilly, T.W. Schmidt, S.H. Kable, J. Phys. Chem. A 110, 12355 (2006) CrossRefGoogle Scholar
  20. 20.
    H. Neij, B. Johansson, M. Aldén, Combust. Flame 99, 449 (1994) CrossRefGoogle Scholar
  21. 21.
    J.R. Gascooke, U.N. Alexander, W.D. Lawrance, J. Chem. Phys. 134, 184301 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    J.R. Gascooke, U.N. Alexander, W.D. Lawrance, J. Chem. Phys. 136, 134309 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    J.R. Gascooke, W.D. Lawrance, Chem. Phys. Lett. 555, 38 (2013) ADSCrossRefGoogle Scholar
  24. 24.
    J.R. Gascooke, W.D. Lawrance, J. Chem. Phys. 138, 084304 (2013) ADSCrossRefGoogle Scholar
  25. 25.
    J.R. Gascooke, W.D. Lawrance, J. Chem. Phys. 138, 134302 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    E.A. Virgo, J.R. Gascooke, W.D. Lawrance, J. Chem. Phys. 140, 154310 (2014) ADSCrossRefGoogle Scholar
  27. 27.
    J.R. Gascooke, E.A. Virgo, W.D. Lawrance, J. Chem. Phys. 142, 024315 (2015) ADSCrossRefGoogle Scholar
  28. 28.
    J.R. Gascooke, E.A. Virgo, W.D. Lawrance, J. Chem. Phys. 143, 044313 (2015) ADSCrossRefGoogle Scholar
  29. 29.
    D.L. Kokkin, T.C. Steimle, D. DeMille, Phys. Rev. A 90, 062503 (2014) ADSCrossRefGoogle Scholar
  30. 30.
    N.J. Reilly, D.L. Kokkin, M. Nakajima, K. Nauta, S.H. Kable, T.W. Schmidt, J. Am. Chem. Soc. 130, 3137 (2008) CrossRefGoogle Scholar
  31. 31.
    N.J. Reilly, M. Nakajima, B.A. Gibson, T.W. Schmidt, S.H. Kable, J. Chem. Phys. 130, 144313 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    N.J. Reilly, M. Nakajima, T.P. Troy, N. Chalyavi, K.A. Duncan, K. Nauta, S.H. Kable, T.W. Schmidt, J. Am. Chem. Soc. 131, 13423 (2009) CrossRefGoogle Scholar
  33. 33.
    T.P. Troy, M. Nakajima, N. Chalyavi, K. Nauta, S.H. Kable, T.W. Schmidt, J. Phys. Chem. A 116, 7906 (2012) CrossRefGoogle Scholar
  34. 34.
    N.J. Reilly, M. Nakajima, T.P. Troy, D.L. Kokkin, N. Chalyavi, K. Duncan, K. Nauta, R.G. Sharp, T.W. Schmidt, S.H. Kable, J. Phys: Conf. Ser. 185, 012037 (2009) Google Scholar
  35. 35.
    J.A. Joester, M. Nakajima, N.J. Reilly, D.L. Kokkin, K. Nauta, S.H. Kable, T.W. Schmidt, J. Chem. Phys. 127, 214303 (2007) ADSCrossRefGoogle Scholar
  36. 36.
    M. Nakajima, J.A. Joester, N.I. Page, N.J. Reilly, G.B. Bacskay, T.W. Schmidt, S.H. Kable, J. Chem. Phys. 131, 044301 (2009) ADSCrossRefGoogle Scholar
  37. 37.
    P.R. Stollenwer, B.C. Odom, D.L. Kokkin, T. Steimle, J. Mol. Spectrosc. 332, 26 (2017) ADSCrossRefGoogle Scholar
  38. 38.
    D.L. Kokkin, T. Ma, T. Steimle, T.J. Sears, J. Chem. Phys. 144, 244304 (2016) ADSCrossRefGoogle Scholar
  39. 39.
    W. Roth, P. Imhof, M. Gerhards, S. Schumm, K. Kleinermanns, Chem. Phys. 252, 247 (2000) ADSCrossRefGoogle Scholar
  40. 40.
    D.H. Levy, Science 214, 263 (1981) ADSCrossRefGoogle Scholar
  41. 41.
    D.R. Borst, D.W. Pratt, J. Chem. Phys. 113, 3658 (2000) ADSCrossRefGoogle Scholar
  42. 42.
    G.H. Atkinson, C.S Parmenter, J. Mol. Spectrosc. 73, 52 (1978) ADSCrossRefGoogle Scholar
  43. 43.
    R.H. Page, Y.R. Shen, Y.T. Lee, J. Chem. Phys. 88, 5362 (1988) ADSCrossRefGoogle Scholar
  44. 44.
    O.J. Maselli, J.R. Gascooke, W.D. Lawrance, M.A. Buntine, J. Phys. Chem. C 113, 637 (2009) CrossRefGoogle Scholar
  45. 45.
    O.J. Maselli, J.R. Gascooke, W.D. Lawrance, M.A. Buntine, Chem. Phys. Lett. 513, 1 (2011) ADSCrossRefGoogle Scholar
  46. 46.
    A. Miani, E. Cane, P. Palmieri, A. Trombetti, J. Chem. Phys. 112, 248 (2000) ADSCrossRefGoogle Scholar
  47. 47.
    O.J. Maselli, Ph.D. thesis, The University of Adelaide, 2010 Google Scholar
  48. 48.
    M. Mons, J. Lecalve, F. Piuzzi, I. Dimicoli, J. Chem. Phys. 92, 2155 (1990) ADSCrossRefGoogle Scholar
  49. 49.
    D.G. Lister, J.N. Macdonald, N.L. Owen, eds., Internal rotation, inversion: an introduction to large amplitude motions in molecules (Academic Press, London, 1978) Google Scholar
  50. 50.
    D.J. Nesbitt, M.A. Suhm, Phys. Chem. Chem. Phys. 12, 8151 (2010) CrossRefGoogle Scholar
  51. 51.
    E.B. Wilson, J.C. Decius, P.C. Cross, eds., Molecular vibrations (McGraw-Hill, London, 1955) Google Scholar
  52. 52.
    I. Kleiner, J. Mol. Spectrosc. 260, 1 (2010) ADSCrossRefGoogle Scholar
  53. 53.
    P. Groner, J. Mol. Spectrosc. 278, 52 (2012) ADSCrossRefGoogle Scholar
  54. 54.
    PROSPE: Programs for ROtational SPEctroscopy, http://www.ifpan.edu.pl/kisiel/prospe.htm
  55. 55.
    V.V. Ilyushin, Z. Kisiel, L. Pszczółkowski, H. Măder, J.T. Hougen, J. Mol. Spectrosc. 259, 26 (2010) ADSCrossRefGoogle Scholar
  56. 56.
    E.B. Wilson Jr., C.C. Lin, D.R. Lide Jr., J. Chem. Phys. 23, 136 (1955) ADSCrossRefGoogle Scholar
  57. 57.
    W. Gordy, R.L. Cook, Microwave molecular spectra (Wiley, New York, 1970), Chap. 12 Google Scholar
  58. 58.
    K. Okuyama, N. Mikami, M. Ito, J. Phys. Chem. 89, 5617 (1985) CrossRefGoogle Scholar
  59. 59.
    K. Okuyama, N. Mikami, M. Ito, Laser Chem. 7, 197 (1987) CrossRefGoogle Scholar
  60. 60.
    T. Aota, T. Ebata, M. Ito, J. Phys. Chem. 93, 3519 (1989) CrossRefGoogle Scholar
  61. 61.
    H. Mizuno, K. Okuyama, T. Ebata, M. Ito, J. Phys. Chem. 91, 5589 (1987) CrossRefGoogle Scholar
  62. 62.
    G. Myszkiewicz, W.L. Meerts, C. Ratzer, M. Schmitt, J. Chem. Phys. 123, 044304 (2005) ADSCrossRefGoogle Scholar
  63. 63.
    S. Tanaka, K. Okuyama, J. Chem. Phys. 134, 084311 (2011) ADSCrossRefGoogle Scholar
  64. 64.
    J.G. Philis, V.S. Melissas, J. Chem. Phys. 127, 204310 (2007) ADSCrossRefGoogle Scholar
  65. 65.
    J.A. Ruiz-Santoyo, J. Wilke, M. Wilke, J.T. Yi, D.W. Pratt, M. Schmitt, L. Álvarez-Valtierra, J. Chem. Phys. 144, 044303 (2016) ADSCrossRefGoogle Scholar
  66. 66.
    M. Fujii, M. Yamauchi, K. Takazawa, M. Ito, Spectrochim. Acta 50A, 1421 (1994) ADSCrossRefGoogle Scholar
  67. 67.
    J.M. Hollas, P.F. Taday, J. Chem. Soc. Faraday Trans. 87, 3585 (1991) CrossRefGoogle Scholar
  68. 68.
    P.J. Breen, E.R. Bernstein, H.V. Secor, J.I. Seeman, J. Am. Chem. Soc. 111, 1958 (1989) CrossRefGoogle Scholar
  69. 69.
    P.J. Morgan, L. Alvarez-Valtierra, D.W. Pratt, Phys. Chem. Chem. Phys. 12, 8323 (2010) CrossRefGoogle Scholar
  70. 70.
    R.A. Walker, E.C. Richard, K.-T. Lu, J.C. Weisshaar, J. Phys. Chem. 99, 12422 (1995) CrossRefGoogle Scholar
  71. 71.
    R.A. Walker, E.C. Richard, J.C. Weisshaar, J. Phys. Chem. 100, 7333 (1996) CrossRefGoogle Scholar
  72. 72.
    E.C. Richard, R.A. Walker, J.C. Weisshaar, J. Chem. Phys. 104, 4451 (1996) ADSCrossRefGoogle Scholar
  73. 73.
    H. Kojima, K. Sakeda, T. Suzuki, T. Ichimura, J. Phys. Chem. A 102, 8727 (1998) CrossRefGoogle Scholar
  74. 74.
    P.J. Breen, J.A. Warren, E.R. Bernstein, J.I. Seeman, J. Chem. Phys. 87, 1917 (1987) ADSCrossRefGoogle Scholar
  75. 75.
    L.H. Spangler, Annu. Rev. Phys. Chem. 48, 481 (1997) ADSCrossRefGoogle Scholar
  76. 76.
    A.M. Gardner, A.M. Green, V.M. Tamé-Reyes, V.H.K. Wilton, T.G. Wright, J. Chem. Phys. 138, 134303 (2013) ADSCrossRefGoogle Scholar
  77. 77.
    J.R. Gascooke, W.D. Lawrance, J. Mol. Spectrosc. 318, 53 (2015) ADSCrossRefGoogle Scholar
  78. 78.
    J.H. Callomon, G.G. Chandler, Appl. Opt. 8, 1133 (1969) ADSCrossRefGoogle Scholar
  79. 79.
    H.-L. Dai, R.W. Field, eds., in Molecular dynamics and spectroscopy by stimulated emission pumping, Advanced series in physical chemistry (World Scientific, New Jersey, 1995), Vol. 4 Google Scholar
  80. 80.
    U. Boesl, H.J. Neusser, E.W. Schlag, Z. Naturforsch. A 33, 1546 (1978) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Chemical and Physical Sciences, Flinders UniversityAdelaideAustralia

Personalised recommendations