Advertisement

Application of relativistic coupled-cluster theory to electron impact excitation of Mg+ in the plasma environment

  • Lalita Sharma
  • Bijaya Kumar Sahoo
  • Pooja Malkar
  • Rajesh SrivastavaEmail author
Regular Article

Abstract

A relativistic coupled-cluster theory is implemented to study electron impact excitations of atomic species. As a test case, the electron impact excitations of the 3s 2S1∕2–3p 2P1∕2;3∕2 resonance transitions are investigated in the singly charged magnesium (Mg+) ion using this theory. Accuracies of wave functions of Mg+ are justified by evaluating its attachment energies of the relevant states and compared with the experimental values. The continuum wave function of the projectile electron are obtained by solving Dirac equations assuming distortion potential as static potential of the ground state of Mg+. Comparison of the calculated electron impact excitation differential and total cross-sections with the available measurements are found to be in very good agreements at various incident electron energies. Further, calculations are carried out in the plasma environment in the Debye-Hückel model framework, which could be useful in the astrophysics. Influence of plasma strength on the cross-sections as well as linear polarization of the photon emission in the 3p 2P3∕2–3s 2S1∕2 transition is investigated for different incident electron energies.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    A.K. Pradhan, S.N. Nahar, Atomic astrophysics and spectroscopy (Cambridge University Press, New York, 2011) Google Scholar
  2. 2.
    R.E. Johnson, Introduction to atomic and molecular collisions (Plenum Press, New York/London, 1982) Google Scholar
  3. 3.
    M.Y. Amusia, in Many-body effects in single photoionization processes, many-body atomic physics, edited by J.J. Boyle, M.S. Pindzola (Cambridge University Press, New York, 1998), Chap. 8, p. 185 Google Scholar
  4. 4.
    D.E. Post, J. Nucl. Mater. 220, 143 (1995) ADSCrossRefGoogle Scholar
  5. 5.
    R.A. Dressler, Y.-H. Chiu, O. Zatsarinny, K. Bartschat, R. Srivastava, L. Sharma, J. Phys. D 42, 185203 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    Dipti, R.K. Gangwar, R. Srivastava, A.D. Stauffer, Eur. J. Phys. D 67, 203 (2013) ADSCrossRefGoogle Scholar
  7. 7.
    N.R. Badnell, G. Del Zanna, L. Fernández-Menchero, A.S. Giunta, G.Y. Liang, H.E. Mason, P.J. Storey, J. Phys. B 49, 094001 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    I. Bray, D.V. Fursa, A.S. Kheifets, A.T. Stelbovics, J. Phys. B 35, 15 (2002) CrossRefGoogle Scholar
  9. 9.
    P.G. Burke, R-matrix theory of atomic collisions (Springer-Verlag Publication, Berlin, 2013) Google Scholar
  10. 10.
    P. Jönsson, X. He, C.F. Fischer, I.P. Grant, Comput. Phys. Commun. 177, 597 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    A. Szabo, N. Ostuland, Modern quantum chemistry, 1st edn. (revised) (Dover Publications, Inc., Mineola, NY, 1996) Google Scholar
  12. 12.
    I. Shavitt, R.J. Bartlett, Many-body methods in chemistry and physics (Cambridge University Press, Cambridge, UK, 2009) Google Scholar
  13. 13.
    R.K. Janev, S. Zhang, J. Wang, Matter Radiat. Extremes 1, 237 (2016) CrossRefGoogle Scholar
  14. 14.
    D. Salzmann, Atomic physics in hot plasmas (Oxford University Press, Oxford, 1998) Google Scholar
  15. 15.
    J.C. Weisheit, Adv. At. Mol. Phys. 25, 101 (1989) ADSCrossRefGoogle Scholar
  16. 16.
    M.S. Murillo, J.C. Weisheit, Phys. Rep. 302, 1 (1998) ADSCrossRefGoogle Scholar
  17. 17.
    B. Saha, S. Fritzsche, Phys. Rev. A, 73, 036405 (2006) ADSGoogle Scholar
  18. 18.
    A.N. Sil, J. Anton, S. Fritzsche, P.K. Mukherjee, B. Fricke, Eur. Phys. J. D 55, 645 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    Y. Jianmin, Phys. Rev. E 66, 047401 (2002) Google Scholar
  20. 20.
    S. Ichimaru, Rev. Mod. Phys.54, 1017 (1982) ADSCrossRefGoogle Scholar
  21. 21.
    A.N. Sil, S. Canuto, P.K. Mukherjee, Adv. Quantum Chem. 58, 115 (2009) CrossRefGoogle Scholar
  22. 22.
    M.C. Zammit, D.V. Fursa, I. Bray, Chem. Phys. 398, 214 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    M.C. Zammit, D.V. Fursa, I. Bray, Chem. Phys. 82, 052705 (2010) Google Scholar
  24. 24.
    S.B. Zhang, J.G. Wang, R.K. Janev, Phys. Rev. Lett. 104, 023203 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    S.B. Zhang, J.G. Wang, R.K. Janev, X.J. Chen, Phys. Rev. A 83, 032724 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    Y.Y. Qi, Y. Wu, J.G. Wang, Y.Z. Qu, Phys. Plasmas 16, 023502 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    Y.Y. Qi, J.G. Wang, R.K. Janev, Phys. Rev. A 80, 063404 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    A. Ghoshal, Y.K. Ho, J. Phys. B 43, 045203 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    Z.B. Chen, C.Z. Dong, J. Jiang, L.Y. Xie, J. Phys. B 48, 144030 (2015) ADSCrossRefGoogle Scholar
  30. 30.
    B.K. Sahoo, J. Phys. B 43, 231001 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    D.K. Nandy, S. Singh, B.K. Sahoo, MNRAS 452, 2546 (2015) ADSCrossRefGoogle Scholar
  32. 32.
    B.K. Sahoo, B.P. Das, Phys. Rev. A 92, 052511 (2015) ADSCrossRefGoogle Scholar
  33. 33.
    B.K. Sahoo, Phys. Rev. A 93, 022503 (2016) ADSCrossRefGoogle Scholar
  34. 34.
    E. Charro, I. Martín, Astrophys. J. 585, 1191 (2003) ADSCrossRefGoogle Scholar
  35. 35.
    A.G. Jensen, T.P. Snow, Astrophys. J. 669, 401 (2007) ADSCrossRefGoogle Scholar
  36. 36.
    G. Çelik, D. Doğan, Ş. Ateş, M. Taşer, J. Quant. Spectrosc. Radiat. Transf. 113, 1601 (2012) ADSCrossRefGoogle Scholar
  37. 37.
    N.F. Allard, G. Guillon, V.A. Alekseev, J.F. Kielkopf, A&A 593, A13 (2016) ADSCrossRefGoogle Scholar
  38. 38.
    M. Guitou, A.K. Belyaev, P.S. Barklem, A. Spielfiedel, N. Feautrier, J. Phys. B 44, 035202 (2011) ADSCrossRefGoogle Scholar
  39. 39.
    L. Sharma, A. Surzhykov, R. Srivastava, S. Fritzsche, Phys. Rev. A 83, 062701 (2011) ADSCrossRefGoogle Scholar
  40. 40.
    S.J. Smith, A. Chutjian, J. Mitroy, S.S. Tayal, R.J.W. Henry, K.-F. Man, R.J. Mawhorter, I.D. Williams, Phys. Rev. A 48, 292 (1993) ADSCrossRefGoogle Scholar
  41. 41.
    I.D. WIlliam, A. Chutjian, R.J. Mawhorter, J. Phys. B 19, 2189 (1986) ADSCrossRefGoogle Scholar
  42. 42.
    I.D. Williams, A. Chutjian, A.Z. Msezane, R.J.W. Henry, Astrophys. J. 299, 1063 (1985) ADSCrossRefGoogle Scholar
  43. 43.
    Y.K. Kim, Phys. Rev. A 65, 022705 (2002) ADSCrossRefGoogle Scholar
  44. 44.
    A.W. Pangantiwar, R. Srivastava, J. Phys. B 21, L219 (1988) ADSCrossRefGoogle Scholar
  45. 45.
    M. Das, B.K. Sahoo, S. Pal, Phys. Rev. A 93, 052513 (2016) ADSCrossRefGoogle Scholar
  46. 46.
    B.K. Sahoo, M. Das, Eur. Phys. J. D 70, 270 (2016) ADSCrossRefGoogle Scholar
  47. 47.
  48. 48.
    F.A. Parpia, C.F. Fischer, I.P. Grant, Comput. Phys. Commun. 94, 249 (1996) ADSCrossRefGoogle Scholar
  49. 49.

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lalita Sharma
    • 1
  • Bijaya Kumar Sahoo
    • 2
    • 3
  • Pooja Malkar
    • 1
  • Rajesh Srivastava
    • 1
    Email author
  1. 1.Department of PhysicsIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Atomic and Molecular Physics Division, Physical Research LaboratoryAhmedabadIndia
  3. 3.State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of SciencesWuhanP.R. China

Personalised recommendations