Advertisement

Performance of an iodine-fueled radio-frequency ion-thruster

  • Kristof HolsteEmail author
  • Waldemar Gärtner
  • Daniel Zschätzsch
  • Steffen Scharmann
  • Peter Köhler
  • Patrick Dietz
  • Peter J. Klar
Regular Article
Part of the following topical collections:
  1. Topical Issue: Physics of Ion Beam Sources

Abstract

Two sets of performance data of the same radio-frequency ion-thruster (RIT) have been recorded using iodine and xenon, respectively, as propellant. To characterize the thruster’s performance, we have recorded the radio-frequency DC-power, required for yielding preset values of the extracted ion-beam currents, as a function of mass flow. For that purpose, an iodine mass flow system had to be developed, calibrated, and integrated into a newly-built test facility for studying corrosive propellants. The performance mappings for iodine and xenon differ significantly despite comparable operation conditions. At low mass flows, iodine exhibits the better performance. The situation changes at higher mass flows where the performance of iodine is significantly poorer than that of xenon. The reason is very likely related to the molecular nature of iodine. Our results show that iodine as propellant is compatible with RIT technology. Furthermore, it is a viable alternative as propellant for dedicated space missions. In particular, when taking into account additional benefits such as possible storage as a solid and its low price the use of iodine as propellant in ion thrusters is competitive.

Graphical abstract

References

  1. 1.
    M. Martinez-Sanchez, J.E. Pollard, J. Prop. Power 14, 688 (1998) CrossRefGoogle Scholar
  2. 2.
    S. Mazouffre, Plasma Sources Sci. Technol. 25, 033002 (2016) ADSCrossRefGoogle Scholar
  3. 3.
    A. Kieckhafer, L.B. King, J. Propuls. Power 23, 21 (2007) CrossRefGoogle Scholar
  4. 4.
    R. Dressler, Y.-H. Chiu, D. Levandier, Propellant alternatives for ion and Hall effect thrusters, in Proc. 28th Aerosp. Sci. Meeting Exhibit, Reno, NV, USA (2000) Google Scholar
  5. 5.
    O.S. Tverdokhlebov, A.V. Semenkin, Iodine propellant for electric propulsion – to be or not to be, in Proc. 37th AIAA/ASME/SAE/ASEE Joint Propuls. Conf., Salt Lake City, UT, USA (2001) Google Scholar
  6. 6.
    Y.-H. Chiu, B.D. Prince, Optical emission spectra of the iodine Hall effect thruster, in 48th AIAA/ASME/SAE/ASEE Joint Propuls. Conf., Atlanta, Georgia, USA (2012) Google Scholar
  7. 7.
    J. Szabo, M. Robin, S. Paintal, B. Pote, V. Hruby, C. Freeman, IEEE Trans. Plasma Sci. 43, 141 (2015) ADSCrossRefGoogle Scholar
  8. 8.
    J. Szabo, M. Robin, S. Paintal, B. Pote, V. Hruby, C. Freeman, Iodine propellant space propulsion, in 33rd International Electric Propulsion Conference, Washington, D.C., USA (2013) Google Scholar
  9. 9.
    K.A. Polzin, S.R. Peeples, A.O. Burt, A.K. Martin, A. Martinez, J.F. Seixal, S. Mauro, Development, demonstration and analysis of an integrated iodine Hall thruster feed system, in 52nd AIAA, SAE/ASEE Joint Propulsion Conference, Salt Lake City, USA (2016) Google Scholar
  10. 10.
    K.A. Polzin, S. Peeples, Iodine Hall thruster propellant feed system for a CubeSat, in 50nd AIAA, ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, USA (2014) Google Scholar
  11. 11.
    H. Kamhawi, T. Haag, G. Benaides, T. Hickman, T. Smith, G. Williams, J. Myers, K. Polzin, J. Dankanich, L. Byrne, J. Szabo, L. Lee, Overview of iodine Hall thruster development activities at NASA Glenn Research Center, in 52nd AIAA, SAE/ASEE Joint Propulsion Conference, Salt Lake City, USA (2016) Google Scholar
  12. 12.
    J.W. Dankanich, K.A. Polzin, D. Calvert, H. Kamhawi, The iodine Satellite (iSAT) Hall thruster demonstration mission concept and development, in 50nd AIAA, ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, USA (2014) Google Scholar
  13. 13.
    P. Grondein, T. Lafleur, P. Chabert, A. Aanesland, Phys. Plasmas 23, 033514 (2016) ADSCrossRefGoogle Scholar
  14. 14.
    M. Tsay, J. Frongillo, K. Hohman, Iodine-fueled mini RF ion thruster for CubeSat applications, in 34th International Electric Propulsion Conference, Hyogo-Kobe, Japan (2015) Google Scholar
  15. 15.
    M. Tsay, J. Frongillo, J. Model, J. Zwahlen, L. Paritsky, Maturation of iodine-fueled BIT-3 RF ION thruster and RF neutralizer, in 52nd AIAA, SAE/ASEE Joint Propulsion Conference, Salt Lake City, USA (2016) Google Scholar
  16. 16.
    H.W. Loeb, Acta Astronaut. 8, 49 (1962) Google Scholar
  17. 17.
    H.W. Loeb, J. Spacecr. Rockets 8, 494 (1971) ADSCrossRefGoogle Scholar
  18. 18.
    M. Dobkevicius, D. Feili, Eur. Phys. J. D. 70, 11 (2016) CrossRefGoogle Scholar
  19. 19.
    M. Dobkevicius, D. Feili, J. Prop. Power 33, 939 (2017) CrossRefGoogle Scholar
  20. 20.
    C. Volkmar, U. Ricklefs, Eur. Phys. J. D. 69, 227 (2015) ADSCrossRefGoogle Scholar
  21. 21.
    C. Volkmar, K. Holste, J. Simon, Vak. Forsch. Prax. 28, 33 (2016) CrossRefGoogle Scholar
  22. 22.
    D. Goebel, I. Katz, Fundamentals of electric propulsion: ion and hall thrusters, 1st edn. (Wiley, New Jersey, 2008) Google Scholar
  23. 23.
    O.A. Popov, V.A. Godyak, J. Appl. Phys. 57, 53 (1985) ADSCrossRefGoogle Scholar
  24. 24.
    B.D. Prince, R.J. Bemish, D.J. Levandier, Application of a first generation collisional radiative model for iodine to optical emissions from the plume of an iodine Hall effect thruster, in 53rd AIAA, SAE, ASEE Joint Propulsion Conference, Atlanta, USA (2017) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kristof Holste
    • 1
    Email author
  • Waldemar Gärtner
    • 1
  • Daniel Zschätzsch
    • 1
  • Steffen Scharmann
    • 1
  • Peter Köhler
    • 1
  • Patrick Dietz
    • 1
  • Peter J. Klar
    • 1
  1. 1.I. Physikalisches Institut, Justus-Liebig-Universität GießenGießenGermany

Personalised recommendations