Advertisement

Structure, stability, and electronic and magnetic properties of small Rh n Mn (n = 1–12) clusters

Regular Article

Abstract

The structure, stability, and magnetic properties of Rhn+1 and Rh n Mn clusters (n = 1–12) are systematically investigated within the framework of the generalized gradient approximation density-functional theory (DFT-GGA). The overall structural evolutionary trend shows that the ground state structures of the Rh n Mn are similar to that of the corresponding pure rhodium clusters except for n = 7, 9, 12, while the Rh7Mn, Rh9Mn and Rh12Mn clusters occur substantially geometry reconstruction. The binding energy of Rh n Mn is decreased with the substitution of one Mn atom, thus indicating that Mn doping can weaken the stability of the Rh clusters. The fragmentation energy and the second-order difference energy of the ground-state Rh n Mn clusters imply that the Rh3Mn, Rh5Mn, Rh8Mn and Rh11Mn clusters are more stable than their neighbors. Compared with corresponding pure Rh n clusters, the Mn atom doping increases the total magnetic moment of the Rh n Mn clusters in various degrees, and the physics origin of such a phenomenon is analyzed in detail based on the average bond length, magnetic coupling, and density of state.

Graphical abstract

Keywords

Clusters and Nanostructures 

References

  1. 1.
    A.J. Cox, J.G. Louderback, L.A. Bloomfield, Phys. Rev. Lett. 71, 923 (1993) ADSCrossRefGoogle Scholar
  2. 2.
    A.J. Cox, J.G. Louderback, S.E. Aspeal, L.A. Bloomfield, Phys. Rev. B 49, 12295 (1994) ADSCrossRefGoogle Scholar
  3. 3.
    B.V. Reddy, S.K. Nayak, S.N. Khanna, B.K. Rao, P. Jena, Phys. Rev. B 59, 5214 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    F. Aguilera-Granja, J.L. Rodríguez-López, K. Michaelian, E.O. Berlanga-Ramírez, A. Vega, Phys. Rev. B 66, 224410 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    Y.C. Bae, H. Osanai, V. Kumar, Y. Kawazoe, Phys. Rev. B 70, 195413 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    Y.C. Bae, V. Kumar, H. Osanai, Y. Kawazoe, Phys. Rev. B 72, 125427 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    F. Aguilera-Granja, L.C. Balbás, A. Vega, J. Phys. Chem. A 113, 13483 (2009) CrossRefGoogle Scholar
  8. 8.
    M.A. Mora, M.A. Mora-Ramírez, M.F. Rubio-Arroyo, Int. J. Quantum Chem. 110, 2541 (2010) Google Scholar
  9. 9.
    J.L.F. Da Silva, M.J. Piotrowski, F. Aguilera-Granja, Phys. Rev. B 86, 125430 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    A. Soltani, A.G. Boudjahem, Comput. Theor. Chem. 1047, 6 (2014) CrossRefGoogle Scholar
  11. 11.
    X. Quek, Y. Guan, E.J. Hensen, Catal. Today 183, 72 (2012) CrossRefGoogle Scholar
  12. 12.
    C. Zhao, H. Wang, C. Xiao, X. Mu, P. Dyson, Y. Kou, J. Catal. 250, 33 (2007) CrossRefGoogle Scholar
  13. 13.
    J.A. Baeza, L. Calvo, M.A. Gilarranz, J.J. Rodriguez, Chem. Eng. J. 240, 271 (2014) CrossRefGoogle Scholar
  14. 14.
    D. Loffreda, D. Simon, P. Sautet, J. Chem. Phys. 108, 6447 (1998) ADSCrossRefGoogle Scholar
  15. 15.
    C.A. Baumann, R.J. Van Zee, S.V. Bhat, W. Weltner Jr., J. Chem. Phys. 78, 190 (1983) ADSCrossRefGoogle Scholar
  16. 16.
    M.B. Knickelbein, Phys. Rev. B 70, 014424 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    N.F. Shen, J.L. Wang, L.Y. Zhu, Chem. Phys. Lett. 467, 114 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    S.Y. Yin, R. Moro, X.S. Xu, W.A. de Heer, Phys. Rev. Lett. 98, 113401 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    B.R. Wang, H.Y. Han, Z. Xie, J. Mol. Struct. 1062, 174 (2014) ADSCrossRefGoogle Scholar
  20. 20.
    Y.W. Mu, Y. Han, J.L. Wang, J.G. Wan, G.H. Wang, Phys. Rev. A 84, 053201 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    D. Die, X.Y. Kuang, J.J. Guo, B.X. Zheng, J. Phys. Chem. Solids 71, 770 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    A.K. Srivastava, N. Misra, Comput. Theor. Chem. 1047, 1 (2014) CrossRefGoogle Scholar
  23. 23.
    T.D. Hang, H.M. Hung, L.N. Thiem, Hue, M.T. Nguyen, Comput. Theor. Chem. 1068, 30 (2015) CrossRefGoogle Scholar
  24. 24.
    W. Kohn, L.J. Sham, Phys. Rev. B 140, 1133 (1965) ADSCrossRefGoogle Scholar
  25. 25.
    R.G. Parr, W.T. Yang, Density-functional theory of atoms and molecules (Oxford University Press, Oxford, 1989) Google Scholar
  26. 26.
    B. Delley, J. Chem. Phys. 92, 508 1990 ADSCrossRefGoogle Scholar
  27. 27.
    B. Delley, J. Chem. Phys. 113, 7756 (2000) ADSCrossRefGoogle Scholar
  28. 28.
    J.P. Perdew, J. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992) ADSCrossRefGoogle Scholar
  29. 29.
    B. Delley, J. Chem. Phys. 92, 508 (1990) ADSCrossRefGoogle Scholar
  30. 30.
    P. Bobadova-Parvanova, K.A. Jackson, S. Srinivas, M. Horoi, J. Chem. Phys. 122, 14310 (2005) ADSCrossRefGoogle Scholar
  31. 31.
    K.D. Bier, T.L. Haslett, A.D. Kirkwood, M. Moskovits, J. Chem. Phys. 89, 6 (1988) ADSCrossRefGoogle Scholar
  32. 32.
    M.D. Morse, Chem. Rev. 86, 1049 (1986) CrossRefGoogle Scholar
  33. 33.
    K.A. Gingerich, D.L. Cocke, J. Chem. Soc. Chem. Commun. 9, 536 (1972) CrossRefGoogle Scholar
  34. 34.
    T. Futschek, M. Marsman, J. Hafner, J. Phys.: Condens. Matter 17, 5927 (2005) ADSGoogle Scholar
  35. 35.
    M.R. Beltrán, F.B. Zamudio, V. Chauhan, P. Sen, H.P. Wang, Y.J. Ko, K. Bowen, Eur. Phys. J. D 67, 63 (2013) ADSCrossRefGoogle Scholar
  36. 36.
    J. Lv, F.Q. Zhang, X.H. Xu, H.S. Wu, Chem. Phys. 363, 65 (2009) ADSCrossRefGoogle Scholar
  37. 37.
    Y. Sun, M. Zhang, R. Fournier, Phys. Rev. B 77, 075435 (2008) ADSCrossRefGoogle Scholar
  38. 38.
    Y. Sun, R. Fournier, M. Zhang, Phys. Rev. A 79, 043202 (2009) ADSCrossRefGoogle Scholar
  39. 39.
    C. Kittel, Introduction to solid state physics, 8th edn. (Wiley, New York, 2005) Google Scholar
  40. 40.
    D. Die, X.Y. Kuang, B. Zhu, J.J. Guo, Physica B 406, 3160 (2011) ADSCrossRefGoogle Scholar
  41. 41.
    M.A. Tafoughalt, M. Samah, Physica B 407, 2014 (2012) ADSCrossRefGoogle Scholar
  42. 42.
    S. Datta, M. Kabir, T.S. Dasgupta, A. Mookerjee, Phys. Rev. B 80, 085418 (2009) ADSCrossRefGoogle Scholar
  43. 43.
    N.S. Venkataramanan, R. Sahara, H. Mizuseki, Y. Kawazoe, J. Phys. Chem. A 114, 5049 (2010) CrossRefGoogle Scholar
  44. 44.
    T. Sondón, J. Guevara, A. Saul, Phys. Rev. B 75, 104426 (2007) ADSCrossRefGoogle Scholar
  45. 45.
    C.A. Baumann, R.J. Van Zee, S.V. Bhat, W. Weltner Jr., J. Chem. Phys. 78, 190 (1983) ADSCrossRefGoogle Scholar
  46. 46.
    J. Mejía-López, A.H. Romero, M.E. Garcia, J.L. Morán-López, Phys. Rev. B 78, 134405 (2008) ADSCrossRefGoogle Scholar
  47. 47.
    G.W. Zhang, Y.P. Feng, C.K. Ong, Phys. Rev. B 54, 17208 (1996) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Material Science, Shanxi Normal UniversityLinfenP.R. China

Personalised recommendations