Diagnostics and characterization of nanodust and nanodusty plasmas

  • Franko Greiner
  • Andrè Melzer
  • Benjamin Tadsen
  • Sebastian Groth
  • Carsten Killer
  • Florian Kirchschlager
  • Frank Wieben
  • Iris Pilch
  • Harald Krüger
  • Dietmar Block
  • Alexander Piel
  • Sebastian Wolf
Regular Article
  • 48 Downloads
Part of the following topical collections:
  1. Topical Issue: Fundamentals of Complex Plasmas

Abstract

Plasmas growing or containing nanometric dust particles are widely used and proposed in plasma technological applications for production of nano-crystals and surface deposition. Here, we give a compact review of in situ methods for the diagnostics of nanodust and nanodusty plasmas, which have been developed in the framework of the SFB-TR24 to fully characterize these systems. The methods include kinetic Mie ellipsometry, angular-resolved Mie scattering, and 2D imaging Mie ellipsometry to get information about particle growth processes, particle sizes and particle size distributions. There, also the role of multiple scattering events is analyzed using radiative transfer simulations. Computed tomography and Abel inversion techniques to get the 3D dust density profiles of the particle cloud will be presented. Diagnostics of the dust dynamics yields fundamental dust and plasma properties like particle charges and electron and ion densities. Since nanodusty plasmas usually form dense dust clouds electron depletion (Havnes effect) is found to be significant.

Graphical abstract

References

  1. 1.
    O. Havnes, C. Goertz, G. Morfill, E. Grun, W. Ip, J. Geophys. Res. Space Phys. 92, 2281 (1987) ADSCrossRefGoogle Scholar
  2. 2.
    I. Goertz, F. Greiner, A. Piel, Phys. Plasmas 18, 013703 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    U.R. Kortshagen, R.M. Sankaran, R.N. Pereira, S.L. Girshick, J.J. Wu, E.S. Aydil, Chem. Rev. 116, 11061 (2016) CrossRefGoogle Scholar
  4. 4.
    C. Hollenstein, Plasma Phys. Control. Fusion 42, R93 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    Y. Watanabe, Plasma Phys. Control. Fusion 39, A59 (1997) ADSCrossRefGoogle Scholar
  6. 6.
    A. Bouchoule, L. Boufendi, Plasma Sources Sci. Technol. 2, 204 (1993) ADSCrossRefGoogle Scholar
  7. 7.
    F.M.J.H. van de Wetering, R.J.C. Brooimans, S. Nijdam, J. Beckers, G.M.W. Kroesen, J. Phys. D: Appl. Phys. 48, 035204 (2015) ADSCrossRefGoogle Scholar
  8. 8.
    J. Berndt, E. Kovacevic, I. Stefanovic, O. Stepanovic, S.H. Hong, L. Boufendi, J. Winter, Contrib. Plasma Phys. 49, 107 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    B. Tadsen, F. Greiner, A. Piel, Phys. Plasmas 21, 103704 (2014) ADSCrossRefGoogle Scholar
  10. 10.
    S. Groth, F. Greiner, B. Tadsen, A. Piel, J. Phys. D: Appl. Phys. 48, 465203 (2015) ADSCrossRefGoogle Scholar
  11. 11.
    D. Aspnes, Thin Solid Films 571, 334 (2014), 6th International Conference on Spectroscopic Ellipsometry (ICSE-VI) ADSCrossRefGoogle Scholar
  12. 12.
    G. Mie, Ann. Phys. 330, 377 (1908) CrossRefGoogle Scholar
  13. 13.
    G. Gebauer, J. Winter, New J. Phys. 5, 38 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    C. Hollenstein, J.L. Dorier, J. Dutta, L. Sansonnens, A.A. Howling, Plasma Sources Sci. Technol. 3, 278 (1994) ADSCrossRefGoogle Scholar
  15. 15.
    Y. Hayashi, K. Tachibana, Jpn. J. Appl. Phys. 33, 4208 (1994) ADSCrossRefGoogle Scholar
  16. 16.
    P. Hauge, F. Dill, Opt. Commun. 14, 431 (1975) ADSCrossRefGoogle Scholar
  17. 17.
    H.G. Tompkins, A.I. Irene editors, Handbook of ellipsometry (William Andrew Publishing, Norwich, 2005) Google Scholar
  18. 18.
    E. Collett, B. Schaefer, Polarized light for scientists and engineers (The Polawave Group, Long Branch, NY, 2012) Google Scholar
  19. 19.
    C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, New York, 1983) Google Scholar
  20. 20.
    H.C. van de Hulst, Light scattering by small particles (John Wiley & Sons, New York, 1957) Google Scholar
  21. 21.
    F. Kirchschlager, S. Wolf, F. Greiner, S. Groth, A. Labdon, Appl. Phys. Lett. 110, 173106 (2017) ADSCrossRefGoogle Scholar
  22. 22.
    B. Tadsen, F. Greiner, S. Groth, A. Piel, Phys. Plasmas 22, 113701 (2015) ADSCrossRefGoogle Scholar
  23. 23.
    F. Greiner, J. Carstensen, N. Köhler, I. Pilch, H. Ketelsen, S. Knist, A. Piel, Plasma Sources Sci. Technol.21, 065005 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    S.H. Hong, J. Winter, J. Appl. Phys. 100, 064303 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    S. Barbosa, F.R.A. Onofri, L. Couëdel, M. Wozniak, C. Montet, C. Pelcé, C. Arnas, L. Boufendi, E. Kovacevic, J. Berndt et al., J. Plasma Phys. 82, 615820403 (2016) CrossRefGoogle Scholar
  26. 26.
    J.S. Tyo, D.L. Goldstein, D.B. Chenault, J.A. Shaw, Appl. Opt. 45, 5453 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    I. Pilch, F. Greiner, J. Appl. Phys. 121, 113302 (2017) ADSCrossRefGoogle Scholar
  28. 28.
    W.W. Stoffels, E. Stoffels, G. Swinkels, M. Boufnichel, G. Kroesen, Phys. Rev. E 59, 2302 (1999) ADSCrossRefGoogle Scholar
  29. 29.
    C. Killer, M. Mulsow, A. Melzer, Plasma Sources Sci. Technol.24, 025029 (2015) ADSCrossRefGoogle Scholar
  30. 30.
    O.H. Asnaz, H. Jung, F. Greiner, A. Piel, Phys. Plasmas 24, 083701 (2017) ADSCrossRefGoogle Scholar
  31. 31.
    C. Killer, M. Himpel, A. Melzer, Rev. Sci. Instrum. 85, 103711 (2014) ADSCrossRefGoogle Scholar
  32. 32.
    C. Killer, F. Greiner, S. Groth, B. Tadsen, A. Melzer, Plasma Sources Sci. Technol. 25, 055004 (2016) ADSCrossRefGoogle Scholar
  33. 33.
    M. Klindworth, O. Arp, A. Piel, Rev. Sci. Instrum. 78, 033502 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    N. Rao, P. Shukla, M. Yu, Planet. Space Sci. 38, 543 (1990) ADSCrossRefGoogle Scholar
  35. 35.
    M. Rosenberg, J. Vac. Sci. Technol. A: Vac. Surf. Films 14, 631 (1996) ADSCrossRefGoogle Scholar
  36. 36.
    B. Tadsen, F. Greiner, A. Piel, Phys. Plasmas 24, 033704 (2017) ADSCrossRefGoogle Scholar
  37. 37.
    I. Pilch, T. Reichstein, A. Piel, Phys. Plasmas 16, 123709 (2009) ADSCrossRefGoogle Scholar
  38. 38.
    L. Boufendi, A. Bouchoule, T. Hbid, J. Vac. Sci. Technol. A: Vac. Surf. Films 14, 572 (1996) ADSCrossRefGoogle Scholar
  39. 39.
    R.L. Heinisch, F.X. Bronold, H. Fehske, Phys. Rev. E 88, 023109 (2013) ADSCrossRefGoogle Scholar
  40. 40.
    M.M. Turner, Plasma Process. Polym. 14, 1600121 (2017) CrossRefGoogle Scholar
  41. 41.
    P. Agarwal, S.L. Girshick, Plasma Chem. Plasma Process. 34, 489 (2014) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Franko Greiner
    • 1
  • Andrè Melzer
    • 2
  • Benjamin Tadsen
    • 1
  • Sebastian Groth
    • 1
  • Carsten Killer
    • 3
  • Florian Kirchschlager
    • 4
    • 5
  • Frank Wieben
    • 1
  • Iris Pilch
    • 6
  • Harald Krüger
    • 2
  • Dietmar Block
    • 1
  • Alexander Piel
    • 1
  • Sebastian Wolf
    • 4
  1. 1.Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu KielKielGermany
  2. 2.Institut für Physik, Ernst-Moritz-Arndt-UniversitätGreifswaldGermany
  3. 3.Max-Planck Institut für Plasmaphysik, EURATOM AssociationGreifswaldGermany
  4. 4.Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu KielKielGermany
  5. 5.Department of Physics and AstronomyUniversity College LondonLondonUK
  6. 6.Thin Film Division, IFM-Materials Physics, Linköping UniversityLinköpingSweden

Personalised recommendations