Microphysics of liquid complex plasmas in equilibrium and non-equilibrium systems

  • Alexander Piel
  • Dietmar Block
  • André Melzer
  • Matthias Mulsow
  • Jan Schablinski
  • André Schella
  • Frank Wieben
  • Jochen Wilms
Regular Article
  • 53 Downloads
Part of the following topical collections:
  1. Topical Issue: Fundamentals of Complex Plasmas

Abstract

The dynamic evolution of the microscopic structure of solid and liquid phases of complex plasmas is studied experimentally and by means of molecular dynamics (MD) simulations. In small finite systems, the cooperative motion can be described in terms of discrete modes. These modes are studied with different experimental approaches. Using diffuse scattered laser light, applying laser tweezer forces to individual particles, and periodic laser pulses, the excitation of modes is investigated. The instantaneous normal mode analysis of experimental data from two-dimensional liquid clusters gives access to the local dynamics of the liquid phase. Our investigations shed light on the role of compressional and shear modes as well as the determination of diffusion constants and melting temperatures in finite systems. Special attention is paid to hydrodynamic situations with a stationary inhomogeneous dust flow. MD simulations allow to study the collective motion in the shell of nearest neighbors, which can be linked to smooth and sudden changes of the macroscopic flow. Finally, the observed micro-motion in all situations above allows to shed light on the preference of shear-like over compressional motion in terms of a minimized potential energy and a dynamic incompressibility.

Graphical abstract

References

  1. 1.
    S. Nunomura, D. Samsonov, S. Zhdanov, G. Morfill, Phys. Rev. Lett. 96, 015003 (2006) ADSCrossRefGoogle Scholar
  2. 2.
    S. Ratynskaia, K. Rypdal, C. Knapek, S. Khrapak, A.V. Milovanov, A. Ivlev, J.J. Rasmussen, G.E. Morfill, Phys. Rev. Lett. 96, 105010 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Feng, J. Goree, B. Liu, Phys. Rev. Lett. 100, 205007 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    P. Hartmann, A. Douglass, J.C. Reyes, L.S. Matthews, T.W. Hyde, A. Kovács, Z. Donkó, Phys. Rev. Lett. 105, 115004 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    Y. Feng, J. Goree, B. Liu, Phys. Rev. Lett. 105, 025002 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    V. Nosenko, J. Goree, Phys. Rev. Lett. 93, 155004 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    Y. Feng, J. Goree, B. Liu, Phys. Rev. E 86, 066402 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    Y. Feng, J. Goree, B. Liu, Phys. Rev. Lett. 104, 165003 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    V. Nosenko, A.V. Ivlev, G.E. Morfill, Phys. Rev. Lett. 108, 135005 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    V. Nosenko, A.V. Ivlev, G.E. Morfill, Phys. Rev. E 87, 043115 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    W.Y. Woon, L. I, Phys. Rev. Lett. 92, 065003 (2004) ADSCrossRefGoogle Scholar
  12. 12.
    L.W. Teng, P.S. Tu, L. I, Phys. Rev. Lett. 90, 245004 (2003) ADSCrossRefGoogle Scholar
  13. 13.
    C.L. Chan, W.Y. Woon, L. I, Phys. Rev. Lett. 93, 220602 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    C.L. Chan, L. I, Phys. Rev. Lett. 98, 105002 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    C.W. Io, L. I, Phys. Rev. E 80, 036401 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    Y.S. Su, Y.H. Liu, L. I, Phys. Rev. Lett. 109, 195002 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    Y.S. Su, C.W. Io, L. I, Phys. Rev. E 86, 016405 (2012) ADSCrossRefGoogle Scholar
  18. 18.
    M. Wolter, A. Melzer, Phys. Rev. E 71, 036414 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    V. Nosenko, J. Goree, A. Piel, Phys. Plasmas 13, 032106 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    J. Schablinski, D. Block, A. Piel, A. Melzer, H. Thomson, H. Kählert, M. Bonitz, Phys. Plasmas 19, 013705 (2012) ADSCrossRefGoogle Scholar
  21. 21.
    H. Thomsen, H. Kählert, M. Bonitz, J. Schablinski, D. Block, A. Piel, A. Melzer, Phys. Plasmas 19, 023701 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    G. Seeley, T. Keyes, J. Chem. Phys. 91, 5581 (1989) ADSCrossRefGoogle Scholar
  23. 23.
    R.M. Stratt, Acc. Chem. Res. 28, 201 (1995) CrossRefGoogle Scholar
  24. 24.
    G.V. Vijayadamodar, A. Nitzan, J. Chem. Phys. 103, 2169 (1995) ADSCrossRefGoogle Scholar
  25. 25.
    R. Schulz, M. Krishnan, I. Daidone, J.C. Smith, Biophys. J. 96, 476 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    C. Durniak, D. Samsonov, J.F. Ralph, S. Zhdanov, G. Morfill, Phys. Rev. E 88, 053101 (2013) ADSCrossRefGoogle Scholar
  27. 27.
    T. Reichstein, I. Pilch, A. Piel, Phys. Plasmas 17, 093701 (2010) ADSCrossRefGoogle Scholar
  28. 28.
    J. Wilms, T. Reichstein, A. Piel, Phys. Plasmas 22, 063701 (2015) ADSCrossRefGoogle Scholar
  29. 29.
    J. Schablinski, D. Block, Phys. Plasmas 22, 023703 (2015) ADSCrossRefGoogle Scholar
  30. 30.
    J. Schablinski, Ph.D. thesis, Kiel University, Germany, 2015 Google Scholar
  31. 31.
    J. Schablinski, F. Wieben, D. Block, Phys. Plasmas 22, 043703 (2015) ADSCrossRefGoogle Scholar
  32. 32.
    D. Block, F. Wieben, J. Schablinski, IEEE Trans. Plasma Sci. 44, 479 (2016) ADSCrossRefGoogle Scholar
  33. 33.
    V.A. Schweigert, F. Peeters, Phys. Rev. B 51, 7700 (1995) ADSCrossRefGoogle Scholar
  34. 34.
    H. Kählert, M. Bonitz, Phys. Rev. Lett. 104, 015001 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    A. Schella, M. Mulsow, A. Melzer, IEEE Trans. Plasma Sci. 42, 2682 (2014) ADSCrossRefGoogle Scholar
  36. 36.
    S. Käding, A. Melzer, Phys. Plasmas 13, 090701 (2006) CrossRefGoogle Scholar
  37. 37.
    J. Schablinski, D. Block, J. Carstensen, F. Greiner, A. Piel, Phys. Plasmas 21, 073701 (2014) ADSCrossRefGoogle Scholar
  38. 38.
    A. Melzer, A. Schella, J. Schablinski, D. Block, A. Piel, Phys. Rev. Lett. 108, 255001 (2012) CrossRefGoogle Scholar
  39. 39.
    A. Melzer, A. Schella, J. Schablinski, D. Block, A. Piel, Phys. Rev. E 87, 033107 (2013) ADSCrossRefGoogle Scholar
  40. 40.
    A. Melzer, Phys. Rev. E 67, 016411 (2003) ADSCrossRefGoogle Scholar
  41. 41.
    M.H. Kong, B. Partoens, F.M. Peeters, New J. Phys. 5, 23.1 (2003) CrossRefGoogle Scholar
  42. 42.
    A. Schella, M. Mulsow, A. Melzer, J. Schablinski, D. Block, Phys. Rev. E 87, 063102 (2013) ADSCrossRefGoogle Scholar
  43. 43.
    T. Reichstein, A. Piel, Phys. Plasmas 18, 083705 (2011) ADSCrossRefGoogle Scholar
  44. 44.
    T. Reichstein, J. Wilms, A. Piel, IEEE Trans. Plasma Sci. 41, 759 (2013) ADSCrossRefGoogle Scholar
  45. 45.
    H. Chanson, The Hydraulics of Open Channel Flows: An Introduction, 2nd edn. (Elsevier, Amsterdam, 2004) Google Scholar
  46. 46.
    A. Piel, J. Wilms, Phys. Plasmas 23, 073701 (2016) ADSCrossRefGoogle Scholar
  47. 47.
    A. Melzer, A. Schella, T. Miksch, J. Schablinski, D. Block, A. Piel, H. Thomsen, H. Kählert, M. Bonitz, Contrib. Plasma Phys. 52, 795 (2012) ADSCrossRefGoogle Scholar
  48. 48.
    O.F. Petrov, M.M. Vasiliev, Y. Tun, K.B. Statsenko, O.S. Vaulina, E.V. Vasilieva, V.E. Fortov, JETP 120, 327 (2015) ADSCrossRefGoogle Scholar
  49. 49.
    V. Nosenko, S.K. Zhdanov, A. Ivlev, C.A. Knapek, G.E. Morfill, Phys. Rev. Lett. 103, 015001 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alexander Piel
    • 1
  • Dietmar Block
    • 1
  • André Melzer
    • 2
  • Matthias Mulsow
    • 2
  • Jan Schablinski
    • 1
  • André Schella
    • 2
    • 3
  • Frank Wieben
    • 1
  • Jochen Wilms
    • 1
  1. 1.Institute for Experimental and Applied Physics, Kiel UniversityKielGermany
  2. 2.Institute of Physics, University of GreifswaldGreifswaldGermany
  3. 3.MPI Dynamics and Self-OrganizationGöttingenGermany

Personalised recommendations