Advertisement

Destruction of chemical warfare surrogates using a portable atmospheric pressure plasma jet

  • Nikola ŠkoroEmail author
  • Nevena Puač
  • Suzana Živković
  • Dijana Krstić-Milošević
  • Uroš Cvelbar
  • Gordana Malović
  • Zoran Lj. Petrović
Regular Article
Part of the following topical collections:
  1. Topical Issue: Physics of Ionized Gases (SPIG 2016)

Abstract

Today’s reality is connected with mitigation of threats from the new chemical and biological warfare agents. A novel investigation of cold plasmas in contact with liquids presented in this paper demonstrated that the chemically reactive environment produced by atmospheric pressure plasma jet (APPJ) is potentially capable of rapid destruction of chemical warfare agents in a broad spectrum. The decontamination of three different chemical warfare agent surrogates dissolved in liquid is investigated by using an easily transportable APPJ. The jet is powered by a kHz signal source connected to a low-voltage DC source and with He as working gas. The detailed investigation of electrical properties is performed for various plasmas at different distances from the sample. The measurements of plasma properties in situ are supported by the optical spectrometry measurements, whereas the high performance liquid chromatography measurements before and after the treatment of aqueous solutions of Malathion, Fenitrothion and Dimethyl Methylphosphonate. These solutions are used to evaluate destruction and its efficiency for specific neural agent simulants. The particular removal rates are found to be from 56% up to 96% during 10 min treatment. The data obtained provide basis to evaluate APPJ’s efficiency at different operating conditions. The presented results are promising and could be improved with different operating conditions and optimization of the decontamination process.

Graphical abstract

References

  1. 1.
    Y.C. Yang, J.A. Baker, J. Richard Ward, Chem. Rev. 92, 1729 (1992) CrossRefGoogle Scholar
  2. 2.
    H.W. Herrmann, I. Henins, J. Park, G.S. Selwyn, Phys. Plasmas 6, 2284 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    T. Hirakawa, N. Mera, T. Sano, N. Negishi, K. Takeuchi, J. Pharm. Soc. Jpn. 129, 71 (2009) CrossRefGoogle Scholar
  4. 4.
    C. Bisio, F. Carniato, C. Palumbo, S.L. Safronyuk, M.F. Starodub, A.M. Katsev, L. Marchese, M. Guidotti, Catal. Today 277, 192 (2016) CrossRefGoogle Scholar
  5. 5.
    A. Fridman, A. Chirokov, A. Gutsol, J. Phys. D: Appl. Phys. 38, R1 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Spectrochim. Acta B 61, 2 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    N. Puač, M. Miletić, M. Mojović, A. Popović-Bijelić, D. Vuković, B. Miličić, D. Maletić, S. Lazović, G. Malović, Z.Lj. Petrović, Open Chem. 13, 332 (2015) Google Scholar
  8. 8.
    J.L. Zimmermann, T. Shimizu, H.U. Schmidt, Y.F. Li, G.E. Morfill, G. Isbary, New J. Phys. 14, 073037 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets, A. Fridman, Plasma Proc. Polym. 5, 503 (2008) CrossRefGoogle Scholar
  10. 10.
    U. Cvelbar, M. Mozetic, N. Hauptman, M. Klanjsek-Gunde, J. Appl. Phys. 106, 103303 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    M. Moisan, J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian, L.H. Yahia, Int. J. Pharm. 226, 1 (2001) CrossRefGoogle Scholar
  12. 12.
    T. Vukusic, M. Shi, Z. Herceg, S. Rogers, P. Estifaee, S.M. Thagard, Innov. Food Sci. Emerg. Technol. 38, 407 (2016) CrossRefGoogle Scholar
  13. 13.
    M. Magureanu, N.B. Mandache, V.I. Parvulescu, Water Res. 81, 124 (2015) CrossRefGoogle Scholar
  14. 14.
    E.J. Klimova, F. Krcma, L. Jonisova, Eur. Phys. J. Appl. Phys. 75, 24709 (2016) ADSCrossRefGoogle Scholar
  15. 15.
    S. Krishna, E. Ceriani, E. Marotta, A. Giardina, P. Špatenka, C. Paradisi, Chem. Eng. J. 292, 35 (2016) CrossRefGoogle Scholar
  16. 16.
    J.E. Foster, Phys. Plasmas 24, 055501 (2017) ADSCrossRefGoogle Scholar
  17. 17.
    Z. Wen-Chao, W. Bai-Rong, X. Hai-Ling, P. Yi-Kang, Plasma Chem. Plasma Process. 30, 381 (2010) CrossRefGoogle Scholar
  18. 18.
    Z. Li, Y. Li, P. Cao, H. Zhao, Plasma Sci. Technol. 15, 696 (2013) ADSCrossRefGoogle Scholar
  19. 19.
    H.W. Herrmann, G.S. Selwyn, I. Henins, J. Park, M. Jeffery, J.M. Williams, IEEE Trans. Plasma Sci. 30, 1460 (2002) ADSCrossRefGoogle Scholar
  20. 20.
    P.J. Bruggeman, M.J. Kushner, B.R. Locke, J.G.E. Gardeniers, W.G. Graham, D.B. Graves, R.C.H.M. Hofman-Caris, D. Maric, J.P. Reid, E. Ceriani, D. Fernandez Rivas, J.E. Foster, S.C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. Mededovic Thagard, D. Minakata, E.C. Neyts, J. Pawlat, Z.Lj. Petrovic, R. Pflieger, S. Reuter, D.C. Schram, S. Schroeter, M. Shiraiwa, B. Tarabová, P.A. Tsai, J.R.R. Verlet, T. von Woedtke, K.R. Wilson, K. Yasui, G. Zvereva, Plasma Sources Sci. Technol. 25, 053002 (2016) ADSCrossRefGoogle Scholar
  21. 21.
    I. Adamovich, S. Baalrud, A. Bogaerts, P.J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J.G. Eden, P. Favia, D.B. Graves, S. Hamaguchi, G. Hieftje, M. Hori, I.D. Kaganovich, U. Kortshagen, M.J. Kushner, N.J. Mason, S. Mazouffre, S. Mededovic Thagard, H.-R. Metelmann, A. Mizuno, E. Moreau, A.B. Murphy, B.A. Niemira, G.S. Oehrlein, Z.Lj. Petrovic, L.C. Pitchford, Y.-K. Pu, S. Rauf, O. Sakai, S. Samukawa, S. Starikovskaia, J. Tennyson, K. Terashima, M.M. Turner, M.C.M. van de Sanden, A. Vardelle, J. Phys. D: Appl. Phys. 50, 323001 (2017) CrossRefGoogle Scholar
  22. 22.
    M.M. Hefny, C. Pattyn, P. Lukes, J. Benedikt, J. Phys. D: Appl. Phys. 49, 404002 (2016) CrossRefGoogle Scholar
  23. 23.
    S.L. Bartelt-Hunt, D.R.U. Knappe, M.A. Barlaz, Environ. Sci. Technol. 38, 112 (2008) CrossRefGoogle Scholar
  24. 24.
    R.T. Rewick, M.L. Schumacher, D.L. Haynes, Appl. Spectrosc. 40, 152 (1986) ADSCrossRefGoogle Scholar
  25. 25.
    E. Nwankire, V.J. Law, A. Nindrayog, B. Twomey, K. Niemi, V. Milosavljević, W.G. Graham, D.P. Dowling, Plasma Chem. Plasma Process. 30, 537 (2010) CrossRefGoogle Scholar
  26. 26.
    J. Benedikt, S. Hofmann, N. Knake, H. Boettner, R. Reuter, A. von Keudell, V. Schulz-von der Gathen, Eur. Phys. J. D 60, 539 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    Y.S. Seo, A.-A.H. Mohamed, K.C. Woo, H.W. Lee, J.K. Lee, K.T. Kim, IEEE Trans. Plasma Sci. 38, 2954 (2010) ADSCrossRefGoogle Scholar
  28. 28.
    R. Brandenburg, J. Ehlbeck, M. Stieber, T. von Woedtke, J. Zeymer, O. Schlueter, K.-D. Weltmann, Contrib. Plasma Phys. 47, 72 (2007) ADSCrossRefGoogle Scholar
  29. 29.
    A.N. Korbut, V.A. Kelman, Yu.V. Zhmenyak, M.S. Klenovskii, Opt. Spectrosc. 116, 919 (2014) ADSCrossRefGoogle Scholar
  30. 30.
    E. Ilik, T. Akan, Phys. Plasmas 23, 053501 (2016) ADSCrossRefGoogle Scholar
  31. 31.
    G.V. Naidis, Plasma Sources Sci. Technol. 23, 065014 (2014) ADSCrossRefGoogle Scholar
  32. 32.
    A.V. Nastuta, V. Pohoata, I. Topala, J. Appl. Phys. 113, 183302 (2013) ADSCrossRefGoogle Scholar
  33. 33.
    S. Hofmann, K. van Gils, S. van der Linden, S. Iseni, P. Bruggeman, Eur. Phys. J. D 68, 56 (2014) ADSCrossRefGoogle Scholar
  34. 34.
    X. Damany, S. Pasquiersa, N. Blin-Simiand, G. Bauville, B. Bournonville, M. Fleury, P. Jeanney, J.S. Sousa, Eur. Phys. J. Appl. Phys. 75, 24713 (2016) ADSCrossRefGoogle Scholar
  35. 35.
    N. Puač, D. Maletić, S. Lazović, G. Malović, A. Đorđević, Z.Lj. Petrović, Appl. Phys. Lett. 101, 024103 (2012) ADSCrossRefGoogle Scholar
  36. 36.
    D. Maletić, N. Puač, N. Selaković, S. Lazović, G. Malović, A. Đorđević, Z.Lj. Petrović, Plasma Sources Sci. Technol. 24, 025006 (2015) ADSCrossRefGoogle Scholar
  37. 37.
    E. Robert, V. Sarron, T. Darny, D. Ries, S. Dozias, J. Fontane, L. Joly, J.-M. Pouvesle, Plasma Sources Sci. Technol. 23, 012003 (2014) ADSCrossRefGoogle Scholar
  38. 38.
    S. Hofmann, K. van Gils, S. van der Linden, S. Iseni, P. Bruggeman, Eur. Phys. J. D 68, 56 (2014) ADSCrossRefGoogle Scholar
  39. 39.
    A.W. Abu-Qare, M.B. Abou-Donia, J. Pharm. Biomed. Anal. 26, 291 (2001) CrossRefGoogle Scholar
  40. 40.
    B. Jiang, J. Zheng, S. Qiu, M. Wu, Q. Zhang, Z. Yan, Q. Xue, Chem. Eng. J. 236, 348 (2014) CrossRefGoogle Scholar
  41. 41.
    M. Hijosa-Valsero, R. Molina, A. Montràs, M. Müller, J.M. Bayona, Environ. Technol. Rev. 3, 71 (2014) CrossRefGoogle Scholar
  42. 42.
    P. Kuklenyik, Ph.D. thesis, Georgia State University, 2009 Google Scholar
  43. 43.
    H. Ando, Y. Miyata, in Drugs and poisons in humans, edited by O. Suzuki, K. Watanabe (Springer-Verlag, Berlin, Heidelberg, New York, 2005) Google Scholar
  44. 44.
    S.C. Cho, H.S. Uhm, Y.C. Hong, Y.G. Park, J.S. Park, J. Appl. Phys. 103, 123303 (2008) ADSCrossRefGoogle Scholar
  45. 45.
    T.Z. Tzou, S.W. Weller, J. Catal. 146, 370 (1994) CrossRefGoogle Scholar
  46. 46.
    J. Kruszelnicki, A.M. Lietz, M.J. Kushner, in Proceedings of Intern. Conf. on Plasmas with Liquids-ICPL 2017, Prague, edited by P. Lukes, K. Kolacek (IPP CAS, Prague, 2017), p. 37l Google Scholar
  47. 47.
    W. Tian, A.M. Lietz, M.J. Kushner, Plasma Sources Sci. Technol. 25, 055020 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Physics Belgrade, University of BelgradeBelgradeSerbia
  2. 2.Institute for Biological Research “Siniša Stanković”, University of BelgradeBelgradeSerbia
  3. 3.Jožef Stefan InstituteLjubljanaSlovenia
  4. 4.Serbian Academy of Sciences and ArtsBelgradeSerbia

Personalised recommendations