Advertisement

Introducing time-dependent molecular fields: a new derivation of the wave equations

Regular Article
  • 72 Downloads

Abstract

This article is part of a series of articles trying to establish the concept molecular field. The theory that induced us to introduce this novel concept is based on the Born-Huang expansion as applied to the Schroedinger equation that describes the interaction of a molecular system with an external electric field. Assuming the molecular system is made up of two coupled adiabatic states the theory leads from a single spatial curl equation, two space-time curl equations and one single space-time divergent equation to a pair of decoupled wave equations usually encountered within the theory of fields. In the present study, just like in the previous study [see Baer et al., Mol. Phys. 114, 227 (2016)] the wave equations are derived for an electric field having two features: (a) its intensity is high enough; (b) its duration is short enough. Although not all the findings are new the derivation, in the present case, is new, straightforward, fluent and much friendlier as compared to the previous one and therefore should be presented again. For this situation the study reveals that the just described interaction creates two fields that coexist within a molecule: one is a novel vectorial field formed via the interaction of the electric field with the Born-Huang non-adiabatic coupling terms (NACTs) and the other is an ordinary, scalar, electric field essentially identical to the original electric field. Section 4 devoted to the visualization of the outcomes via two intersecting Jahn-Teller cones which contain NACTs that become singular at the intersection point of these cones. Finally, the fact that eventually we are facing a kind of a cosmic situation may bring us to speculate that singular NACTs are a result of cosmic phenomena. Thus, if indeed this singularity is somehow connected to reality then, like other singularities in physics, it is formed at (or immediately after) the Big Bang and consequently, guarantees the formation of molecules.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    M. Baer, J. Phys. Chem. A 107, 4724 (2003) CrossRefGoogle Scholar
  2. 2.
    R. Baer, D.J. Kouri, M. Baer, D.K. Hoffman, J. Chem. Phys. 119, 6998 (2003) ADSCrossRefGoogle Scholar
  3. 3.
    M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 2.3.1 Google Scholar
  4. 4.
    M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 2.3.2 Google Scholar
  5. 5.
    M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 1.1.2 Google Scholar
  6. 6.
    M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 1.1.3 Google Scholar
  7. 7.
    M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 6.3.2.2 Google Scholar
  8. 8.
    M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 2.1 Google Scholar
  9. 9.
    M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 2.3.2.3 Google Scholar
  10. 10.
    M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 3.2.2 Google Scholar
  11. 11.
    M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 5.1 Google Scholar
  12. 12.
    M. Baer, J. Phys. Chem. A 110, 6571 (2006) CrossRefGoogle Scholar
  13. 13.
    B. Sarkar, S. Adhikari, M. Baer, J. Chem. Phys. 127, 014301 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    B. Sarkar, S. Adhikari, M. Baer, J. Chem. Phys. 127, 014302 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    A.K. Paul, S. Adhikari, M. Baer, J. Chem. Phys. 132, 034303 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    A.K. Paul, S. Adhikari, M. Baer, Phys. Rep. 496, 79 (2010) ADSGoogle Scholar
  17. 17.
    M. Baer, Int. J. Quantum Chem. 114, 1645 (2014) CrossRefGoogle Scholar
  18. 18.
    M. Baer, B. Mukherjee, S. Mukherjee, S. Adhikari, Mol. Phys. 114, 227 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    M. Born, K. Huang, Dynamical theory of crystal lattices (Oxford University, New York, 1954) Google Scholar
  20. 20.
    M. Born, J.R. Oppenheimer, Ann. Phys. (Leipzig) 84, 457 (1927) ADSCrossRefGoogle Scholar
  21. 21.
    M. Baer, Chem. Phys. Lett. 35, 112 (1975) ADSCrossRefGoogle Scholar
  22. 22.
    M. Baer, Phys. Rep. 358, 75 (2002) ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    M. Baer, Chem. Phys. Lett. 360, 243 (2002) ADSCrossRefGoogle Scholar
  24. 24.
    J.D. Jackson, Classical electrodynamics, 2nd edn. (John Wiley & Sons Inc., New York, 1998), Chapter 6 Google Scholar
  25. 25.
    S. Hu, G.J. Halász, Á. Vibók, A.M. Mebel, M. Baer, Chem. Phys. Lett. 367, 177 (2003) ADSCrossRefGoogle Scholar
  26. 26.
    A. Vibok, G.J. Halasz, A.M. Mebel, S. Hu, M. Baer, Int. J. Quantum Chem. 99, 594 (2004) CrossRefGoogle Scholar
  27. 27.
    T. Vertesi, Á. Vibók, G.J. Halász, M. Baer, J. Chem. Phys. 121, 4000 (2004) ADSCrossRefGoogle Scholar
  28. 28.
    H.A. Jahn, E. Teller, Proc. R. Soc. Lond. Ser. A 161, 220 (1937) ADSCrossRefGoogle Scholar
  29. 29.
    W.D. Hobey, A.D. McLachlan, J. Chem. Phys. 33, 1695 (1960) ADSCrossRefGoogle Scholar
  30. 30.
    H.C. Longuet-Higgins, Adv. Spectrosc. 2, 429 (1961) ADSGoogle Scholar
  31. 31.
    F.T. Smith, Phys. Rev. 179, 111 (1969) ADSCrossRefGoogle Scholar
  32. 32.
    E. Brandas, P. Froelich, Int. J. Quantum Chem. 13, 619 (1978) CrossRefGoogle Scholar
  33. 33.
    F. Rebentrost, in Theoretical chemistry: advances and perspectives, edited by D. Henderson, H. Eyring (Academic Press, 1981), Vol. II, p. 32 Google Scholar
  34. 34.
    T.G. Heil, S.E. Butler, A. Dalgarno, Phys. Rev. A 23, 1100 (1981) ADSCrossRefGoogle Scholar
  35. 35.
    C.A. Mead, D.G. Truhlar, J. Chem. Phys. 77, 6090 (1982) ADSCrossRefGoogle Scholar
  36. 36.
    C.A. Mead, J. Chem. Phys. 78, 807 (1983) ADSCrossRefGoogle Scholar
  37. 37.
    D. Dehareug-Dao, X. Chapuisat, J.C. Lorquet, C. Galloy, G. Raseev, J. Chem. Phys. 78, 1246 (1983) ADSCrossRefGoogle Scholar
  38. 38.
    H.J. Werner, B. Follmeg, M.H. Alexander, J. Chem. Phys. 89, 3139 (1988) ADSCrossRefGoogle Scholar
  39. 39.
    C. Petrongolo, G. Hirsch, R. Buenker, Mol. Phys. 70, 825 (1990) ADSCrossRefGoogle Scholar
  40. 40.
    C. Petrongolo, G. Hirsch, R. Buenker, Mol. Phys. 70, 835 (1990) ADSCrossRefGoogle Scholar
  41. 41.
    M. Baer, R. Englman, Mol. Phys. 75, 283 (1992) ADSCrossRefGoogle Scholar
  42. 42.
    M. Baer, R. Englman, Chem. Phys. Lett. 265, 105 (1997) ADSCrossRefGoogle Scholar
  43. 43.
    D.R. Yarkony, J. Chem. Phys. 105, 10456 (1996) ADSCrossRefGoogle Scholar
  44. 44.
    R.G. Sadygov, D.R. Yarkony, J. Chem. Phys. 109, 20 (1998) ADSCrossRefGoogle Scholar
  45. 45.
    T. Pacher, L.S. Cederbaum, H. Köppel, Adv. Chem. Phys. 84, 293 (1993) Google Scholar
  46. 46.
    G.J. Tawa, S.L. Mielke, D.G. Truhlar, D.W. Schwenke, J. Chem. Phys. 100, 5751 (1994) ADSCrossRefGoogle Scholar
  47. 47.
    R. Baer, D.M. Charutz, R. Kosloff, M. Baer, J. Chem. Phys. 105, 9141 (1996) ADSCrossRefGoogle Scholar
  48. 48.
    D.M. Charutz, R. Baer, M. Baer, Chem. Phys. Lett. 265, 629 (1997) ADSCrossRefGoogle Scholar
  49. 49.
    S. Adhikari, G.D. Billing, J. Chem. Phys. 111, 40 (1999) ADSCrossRefGoogle Scholar
  50. 50.
    A. Alijah, E.E. Nikitin, Mol. Phys. 96, 1399 (1999) ADSCrossRefGoogle Scholar
  51. 51.
    M. Baer, S.H. Lin, A. Alijah, S. Adhikari, G.D. Billing, Phys. Rev. A 62, 032506 (2000) ADSCrossRefGoogle Scholar
  52. 52.
    S. Adhikari, G.D. Billing, A. Alijah, S.H. Lin, M. Baer, Phys. Rev. A 62, 032507 (2000) ADSCrossRefGoogle Scholar
  53. 53.
    L.F. Errea, A. Macias, L. Mendez, I. Rabadan, A. Riera, A. Rojas, P. Sanz, Phys. Rev. A 63, 062713 (2001) ADSCrossRefGoogle Scholar
  54. 54.
    E.S. Kryachko, D.R. Yarkony, Int. J. Quant. Chem. 76, 235 (2000) CrossRefGoogle Scholar
  55. 55.
    R. Englman, A. Yahalom, Adv. Chem. Phys. 124, 197 (2002) Google Scholar
  56. 56.
    I.B. Bersuker, Chem. Rev. 101, 1067 (2001) CrossRefGoogle Scholar
  57. 57.
    A. Kuppermann, R. Abrol, Adv. Chem. Phys. 124, 283 (2002) Google Scholar
  58. 58.
    Conical intersections: electronic structure, dynamics and spectroscopy, edited by W. Domcke, D.R. Yarkony, H. Köppel (World Scientific, Singapore, 2004), in particularly see: D.R. Yarkony, p. 41 Google Scholar
  59. 59.
    Conical intersections: electronic structure, dynamics and spectroscopy, edited by W. Domcke, D.R. Yarkony, H. Köppel (World Scientific, Singapore, 2004), in particularly see: H. Köppel, p. 175 Google Scholar
  60. 60.
    Conical intersections: electronic structure, dynamics and spectroscopy, edited by W. Domcke, D.R. Yarkony, H. Köppel (World Scientific, Singapore, 2004), in particularly see: R. de Vivie-Riedle, A. Hofmann, p. 829 Google Scholar
  61. 61.
    J. Avery, M. Baer, D.G. Billing, Mol. Phys. 100, 1011 (2002) ADSCrossRefGoogle Scholar
  62. 62.
    E.S. Kryachko, Adv. Quant. Chem. 44, 119 (2003) CrossRefGoogle Scholar
  63. 63.
    M.B. Sevryuk, L.Y. Rusin, S. Cavalli, V. Aquilanti, J. Phys. Chem. A 108, 8731 (2004) CrossRefGoogle Scholar
  64. 64.
    P. Barragan, L.F. Errea, A. Macias, L. Mendez, A. Riera, J.M. Lucas, A. Aguilar, J. Chem. Phys. 121, 11629 (2004) ADSCrossRefGoogle Scholar
  65. 65.
    M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984) ADSCrossRefGoogle Scholar
  66. 66.
    D.C. Clary, Science 309, 1227 (2005) MathSciNetCrossRefGoogle Scholar
  67. 67.
    M. Baer, T. Vertsi, G.J. Halász, Á. Vibok, S. Suhai, Faraday Discuss. 127, 337 (2004) ADSCrossRefGoogle Scholar
  68. 68.
    T. Vertesi, E. Bene, A. Vibok, G.J. Halasz, M. Baer, J. Phys. Chem. A 109, 3476 (2005) CrossRefGoogle Scholar
  69. 69.
    T. Vértesi, A. Vibók, G.J. Halász, M. Baer, J. Phys. B: At. Mol. Opt. Phys. 37, 4803 (2004) CrossRefGoogle Scholar
  70. 70.
    A. Vibok, G.J. Halasz, T. Vertesi, T. Suhai, M. Baer, J.P. Toennies, J. Chem. Phys. 119, 6588 (2003) ADSCrossRefGoogle Scholar
  71. 71.
    C.R. Evenhuis, X. Lin, D.H. Zhang, D.R. Yarkony, M.A. Collins, J. Chem. Phys. 123, 134110 (2005) ADSCrossRefGoogle Scholar
  72. 72.
    O. Godsi, C.R. Evenhuis, M.A. Collins, J. Chem. Phys. 125, 104105 (2006) ADSCrossRefGoogle Scholar
  73. 73.
    O. Godsi, M.A. Collins, U. Peshkin, J. Chem. Phys. 132, 124106 (2010) ADSCrossRefGoogle Scholar
  74. 74.
    G.J. Halász, Á. Vibók, R. Baer, M. Baer, J. Chem. Phys. 125, 094102 (2006) ADSCrossRefGoogle Scholar
  75. 75.
    G.J. Halász, Á. Vibók, D.K. Hoffman, D.J. Kouri, M. Baer, J. Chem. Phys. 126, 154309 (2007) ADSCrossRefGoogle Scholar
  76. 76.
    G.J. Halász, Á. Vibók, R. Baer, M. Baer, J. Phys. A: Math. Theor. 40, F267 (2007) ADSCrossRefGoogle Scholar
  77. 77.
    Q. Wu, T. Van Voorhis, J. Phys. Chem. A 110, 9212 (2006) CrossRefGoogle Scholar
  78. 78.
    C. Levi, G.J. Halasz, A. Vibok, I. Bar, Y. Zeiri, R. Kosloff, M. Baer, J. Chem. Phys. 128, 244302 (2008) ADSCrossRefGoogle Scholar
  79. 79.
    C. Levy, G.J. Halász, Á. Vibok, I. Bar, Y. Zeiri, R. Kosloff, M. Baer, Int. J. Quant. Chem. 109, 2482 (2009) ADSCrossRefGoogle Scholar
  80. 80.
    J. Larson, E. Sjoqvist, Phys. Rev. A 79, 043627 (2009) ADSCrossRefGoogle Scholar
  81. 81.
    A. Das, D. Mukhopadhyay, S. Adhikari, M. Baer, J. Chem. Phys. 133, 084107 (2010) ADSCrossRefGoogle Scholar
  82. 82.
    J.E. Subotnik, R.J. Cave, R.P. Steele, N. Shenvi, J. Chem. Phys. 130, 234102 (2009) ADSCrossRefGoogle Scholar
  83. 83.
    S. Hammes-Schiffer, J. Phys. Chem. Lett. 2, 1410 (2011) CrossRefGoogle Scholar
  84. 84.
    W. Skomorowski, F. Pawlowski, T. Korona, R. Moszinski, P.S. Zuckowski, J.M. Hutson, J. Chem. Phys. 134, 114109 (2011) ADSCrossRefGoogle Scholar
  85. 85.
    A. Yahalom, Advances in classical field theory (Bentham eBooks, 2011), Chapter 9 Google Scholar
  86. 86.
    S. Al-Jabour, M. Baer, O. Deeb, M. Liebscher, J. Manz, X. Xu, S. Zilberg, J. Phys. Chem. A 114, 2991 (2010) CrossRefGoogle Scholar
  87. 87.
    T. Van Voorhis, T. Kowalczyk, B. Kaduk, L.-P. Wang, C.-L. Cheng, Q. Wu, Annu. Rev. Phys. Chem. 61, 149 (2010) CrossRefGoogle Scholar
  88. 88.
    M.S. Kaczmarski, Y. Ma, M. Rohlfing, Phys. Rev. B 81, 115433 (2010) ADSCrossRefGoogle Scholar
  89. 89.
    R. Baer, Phys. Rev. Lett. 104, 073001 (2010) ADSCrossRefGoogle Scholar
  90. 90.
    I. Ryb, R. Baer, J. Chem. Phys. 121, 10370 (2004) ADSCrossRefGoogle Scholar
  91. 91.
    A. Alijah, J. Fremont, V.T. Tyuterev, Phys. Rev. A 92, 012704 (2015) ADSCrossRefGoogle Scholar
  92. 92.
    A.K. Paul, S. Ray, D. Mukhopadhyay, S. Adhikari, J. Chem. Phys. 135, 034107 (2011) ADSCrossRefGoogle Scholar
  93. 93.
    M.J. Jamieson, A.S.C. Cheung, H. Ouerdane, Eur. Phys. J. D 56, 181 (2010) ADSCrossRefGoogle Scholar
  94. 94.
    C. Hu, O.J. Sugino, K. Watanebe, J. Chem. Phys. 135, 074101 (2011) ADSCrossRefGoogle Scholar
  95. 95.
    T. Yonehara, K. Hanasaki, K. Takatsuka, Chem. Rev. 112, 499 (2012) CrossRefGoogle Scholar
  96. 96.
    R. Englman, T. Vertesi, J. Phys. B: At. Mol. Opt. Phys. 38, 2443 (2005) ADSCrossRefGoogle Scholar
  97. 97.
    T. Vertesi, R. Englman, J. Phys. B: At. Mol. Opt. Phys. 41, 025102 (2008) ADSCrossRefGoogle Scholar
  98. 98.
    E. Bene, T. Vertesi, R. Englman, J. Chem. Phys. 135, 084101 (2011) ADSCrossRefGoogle Scholar
  99. 99.
    R. Englman, J. Chem. Phys. 144, 024103 (2016) ADSCrossRefGoogle Scholar
  100. 100.
    L.S. Cederbaum, J. Chem. Phys. 138, 224110 (2013) ADSCrossRefGoogle Scholar
  101. 101.
    Y.-C. Chiang, S. Klaiman, F. Otto, L.S. Cederbaum, J. Chem. Phys. 140, 054104 (2014) ADSCrossRefGoogle Scholar
  102. 102.
    N.I. Gidopoulos, E.K.U. Gross, Philos. Trans. R. Soc. A 372, 20130059 (2014) ADSCrossRefGoogle Scholar
  103. 103.
    A. Abedi, N.T. Maitra, E.K.C. Gross, Phys. Rev. Lett. 105, 123002 (2010) ADSCrossRefGoogle Scholar
  104. 104.
    A. Abedi, N.T. Maitra, E.K.C. Gross, J. Chem. Phys. 137, 22A530 (2012) CrossRefGoogle Scholar
  105. 105.
    S. Belz, S. Zilberg, M. Berg, T. Grohmann, M. Leibscher, J. Phys. Chem. A 116, 11189 (2012) CrossRefGoogle Scholar
  106. 106.
    S. Al-Jabour, M. Leibscher, J. Phys. Chem. A 119, 271 (2015) CrossRefGoogle Scholar
  107. 107.
    G.W. Richings, G.A. Worth, J. Phys. Chem. A 119, 12457 (2016) CrossRefGoogle Scholar
  108. 108.
    G.A. Worth, M.A. Robb, Adv. Chem. Phys. 124, 355 (2002) Google Scholar
  109. 109.
    A. Csehi, A. Bende, G.J. Halász, Á. Vibók, A. Das, D. Mukhopadhyay, M. Baer, J. Chem. Phys. 138, 024113 (2013) ADSCrossRefGoogle Scholar
  110. 110.
    A. Csehi, A. Bende, G.J. Halász, Á. Vibók, A. Das, D. Mukhopadhyay, S, Mukherjee, S. Adhikari, M. Baer, J. Phys. Chem. A 118, 6361 (2014) CrossRefGoogle Scholar
  111. 111.
    A. Das, D. Mukhopadhyay, J. Phys. Chem. A 116, 1774 (2012) CrossRefGoogle Scholar
  112. 112.
    A. Das, D. Mukhopadhyay, Chem. Phys. 412, 51 (2013) ADSCrossRefGoogle Scholar
  113. 113.
    A. Das, D. Mukhopadhyay, J. Phys. Chem. A 117, 8680 (2013) CrossRefGoogle Scholar
  114. 114.
    A.-Y. Yu, Phys. Chem. 10, 85 (2015) Google Scholar
  115. 115.
    M. Labuda, J. Gonzalez-Vazquez, M. Fernando, L. Gonzalez, Chem. Phys. 400, 165 (2012) ADSCrossRefGoogle Scholar
  116. 116.
    C. Hu, R. Komakura, Z. Li, K. Watanebe, Int. J. Quant. Chem. 113, 263 (2013) CrossRefGoogle Scholar
  117. 117.
    E.N. Ghassami, J. Larson, A. Larson, J. Chem. Phys. 140, 154304 (2014) ADSCrossRefGoogle Scholar
  118. 118.
    I.G. Ryabinkin, C.-H. Hsieh, R. Kapral, A.F. Izmaylov, J. Chem. Phys. 140, 084104 (2014) ADSCrossRefGoogle Scholar
  119. 119.
    X. Liu, J.E. Subotnik, J. Chem. Theor. Comput. 10, 1004 (2014) CrossRefGoogle Scholar
  120. 120.
    S. Srivastava, M. Baer, N. Sathyamurthy, Mol. Phys. 113, 436 (2015) ADSCrossRefGoogle Scholar
  121. 121.
    V. Dhindhwal, M. Baer, N. Sathyamurthy, J. Phys. Chem. A 120, 2999 (2016) CrossRefGoogle Scholar
  122. 122.
    R. Englman, J. Chem. Phys. 144, 024103 (2016) ADSCrossRefGoogle Scholar
  123. 123.
    G.W. Richings, G.A. Worth, Chem. Phys. Lett. 683, 228 (2017) ADSCrossRefGoogle Scholar
  124. 124.
    G.W. Richings, S. Habershon, Chem. Phys. Lett. (2017)Google Scholar
  125. 125.
    K.K. Baeck, H. An, J. Chem. Phys. 146, 064107 (2017) ADSCrossRefGoogle Scholar
  126. 126.
    C.L. Malbon, X. Zhu, H. Guo, D.R. Yarkony, J. Chem. Phys. 145, 234111 (2016) ADSCrossRefGoogle Scholar
  127. 127.
    I. Last, M. Baer, J. Chem. Phys. 82, 4954 (1985) ADSCrossRefGoogle Scholar
  128. 128.
    I.H. Zimmerman, J.-M. Yuan, T.F. George, J. Chem. Phys. 66, 2638 (1977) ADSCrossRefGoogle Scholar
  129. 129.
    I.H. Zimmerman, M. Baer, T.F. George, J. Phys. Chem. 87, 1478 (1983) CrossRefGoogle Scholar
  130. 130.
    D.J. Tannor, R. Kosloff, S.A. Rice, J. Chem. Phys. 85, 5805 (1986) ADSCrossRefGoogle Scholar
  131. 131.
    R. Kosloff, S.A. Rice, P. Gaspard, J. Chem. Phys. 139, 201 (1989) Google Scholar
  132. 132.
    B. Friedrich, D.P. Pullman, D.R. Herschbach, J. Phys. Chem. 95, 8118 (1991) CrossRefGoogle Scholar
  133. 133.
    D. Hammerich, R. Kosloff, M.A. Ratner, J. Chem. Phys. 97, 6410 (1992) ADSCrossRefGoogle Scholar
  134. 134.
    R. Baer, R. Kosloff, J. Phys. Chem. A 99, 2534 (1995) CrossRefGoogle Scholar
  135. 135.
    B. Friedrich, D.R. Herschbach, Phys. Rev. Lett. 74, 4623 (1995) ADSCrossRefGoogle Scholar
  136. 136.
    R. deVivie Riedel, K. Kobe, J. Manz, W. Meyer, B. Reisch, S. Rutz, E. Schriber, L. Wöste, J. Phys. Chem. 100, 7789 (1996) CrossRefGoogle Scholar
  137. 137.
    T.J. Martinez, M. Ben-Nun, R.D. Levine, J. Chem. Phys. 100, 7884 (1996) CrossRefGoogle Scholar
  138. 138.
    P.B. Corkum et al., Faraday Discuss. 113, 47 (1999) ADSCrossRefGoogle Scholar
  139. 139.
    A. Staudte, D. Pavicie, S. Chelkowski, D. Zeidler, M. Meckel, H. Nikura, M. Scoffler, S. Schossler, B. Ulrich, P.P. Rajeev, T. Weber, T. Jahnke, D.M. Villeneuve, A.D. Bandrauk, C.L. Cocke, P.B. Corkum, R. Dorner, Phys. Rev. Lett. 98, 073003 (2007) ADSCrossRefGoogle Scholar
  140. 140.
    S.A. Rice, Nature (London) 403, 496 (2000) ADSCrossRefGoogle Scholar
  141. 141.
    D. Barash, A.E. Orel, R. Baer, Phys. Rev. A 61, 013402 (2000) ADSCrossRefGoogle Scholar
  142. 142.
    S.I. Chu, D.A. Telnov, Phys. Rep. 390, 1 (2004) ADSMathSciNetCrossRefGoogle Scholar
  143. 143.
    G. Balint-Kurti, F.R. Manby, Q. Ren, M. Artamonov, T.-S. Ho, H. Rabitz, J. Chem. Phys. 122, 084110 (2005) ADSCrossRefGoogle Scholar
  144. 144.
    M. Barbatti, S. Belz, M. Leibscher, H. Lischka, J. Manz, Chem. Phys. 350, 145 (2008) ADSCrossRefGoogle Scholar
  145. 145.
    D.J. Tannor, Introduction to quantum mechanics: a time dependent perspective (University Science Press, Sausalito, 2007) Google Scholar
  146. 146.
    T. Seideman, S. Ramakrishna, Phys. Rev. Lett. 99, 113901 (2007) ADSCrossRefGoogle Scholar
  147. 147.
    H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75, 543 (2003) ADSCrossRefGoogle Scholar
  148. 148.
    I. Barth, C. Bressler, S. Koseki, J. Manz, Chem. Asian J. 7, 1261 (2012) CrossRefGoogle Scholar
  149. 149.
    Y. Arasaki, S. Scheit, K. Takasuka, J. Chem. Phys. 138, 161103 (2013) ADSCrossRefGoogle Scholar
  150. 150.
    N. Moiseyev, N. Sindelka, L.S. Cederbaum, J. Phys. B 41, 221001 (2008) ADSCrossRefGoogle Scholar
  151. 151.
    N. Sindelka, N. Moiseyev, L.S. Cederbaum, J. Phys. B 44, 045603 (2011) ADSCrossRefGoogle Scholar
  152. 152.
    G.J. Halász, Á. Vibók, H.-D. Mayer, L.S. Cederbaum, J. Phys. Chem. A 117, 8528 (2013) CrossRefGoogle Scholar
  153. 153.
    G.J. Halász, Á. Csehi, Á. Vibók, L.S. Cederbaum, J. Phys. Chem. A 118, 11908 (2014) CrossRefGoogle Scholar
  154. 154.
    R. Englman, The Jahn-Teller effect in molecules and crystals (Wiley Interscience, New York, 1972) Google Scholar
  155. 155.
    M.S. Child, Adv. Chem. Phys. 124, 1 (2002) Google Scholar
  156. 156.
    I.B. Bersuker, V.Z. Polinger, Vibronic interactions in molecules and crystals (Springer, NY, 1989) Google Scholar
  157. 157.
    I.B. Bersuker, Chem. Rev. 101, 1067 (2001) CrossRefGoogle Scholar
  158. 158.
    M. Baer, Mol. Phys. 115, 1534 (2017) ADSCrossRefGoogle Scholar
  159. 159.
    P.A.M. Dirac, The principles of quantum chemistry, 4th edn. (Oxford University Press at the Clarendon Press, 1958), Chapter XI Google Scholar
  160. 160.
    E. Eliav, S. Fritzsche, U. Kaldor, Nucl. Phys. A 944, 518 (2015) ADSCrossRefGoogle Scholar
  161. 161.
    I. Infante, E. Eliav, L. Visscher, U. Kaldor, J. Chem. Phys. 127, 124308 (2007) ADSCrossRefGoogle Scholar
  162. 162.
    M. Baer, arXiv:1703.01462 (2017)
  163. 163.
    M. Baer, B. Mukherjee, D. Mukhopadhyay, S. Adhikari, arXiv:1801.00103 (2017)

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Fritz Haber Center for Molecular Dynamics, The Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations