Advertisement

Merocyanine–spiropyran relaxation processes

  • Olha KovalenkoEmail author
  • Yuriy Lopatkin
  • Petro Kondratenko
  • Dmitro Belous
Regular Article

Abstract

In the paper mechanisms of merocyanine–spiropyran transformation were investigated. It was shown that in dark conditions for such transformation it is necessary to overcome the potential barrier with height of ~0.6 eV. A barrierless transformation into the spiropyran molecule is possible due to the rotation of the phenyl moiety of the merocyanine molecule by 90 relative to the plane of the molecule. It was proved that a 90 orientation of moieties in the merocyanine molecule is achievable only in a photochemical way because in S1 state of the molecule energy of the potential surface is lowered by rotation the phenyl moiety relative to its plane.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    C. Elsässer, A. Vüllings, M. Karcher, P. Fumagall, J. Phys. Chem. C 113, 19193 (2009) CrossRefGoogle Scholar
  2. 2.
    J.T.C. Wojtyk, P.M. Kazmaier, E. Buncel, Chem. Commun. 16, 1703 (1998) CrossRefGoogle Scholar
  3. 3.
    J.D. Winkler, C.M. Bowen, V. Michelet, J. Am. Chem. Soc. 120, 3237 (1998) CrossRefGoogle Scholar
  4. 4.
    I. Goykhman, D. Nozaki, G. Cuniberti, S. Yitzchaik, J. Phys. Chem. C 115, 3123 (2011) CrossRefGoogle Scholar
  5. 5.
    M. Heilemann, P. Dedecker, J. HoSens, M. Sauer, Laser Photonics Rev. 3, 180 (2009) CrossRefGoogle Scholar
  6. 6.
    R.F. Khairutdinov, K. Giertz, J.K. Hurst, E.N. Voloshina, N.A. Voloshin, V.I. Minkin, J. Am. Chem. Soc. 120, 12707 (1998) CrossRefGoogle Scholar
  7. 7.
    G. Berkovic, V. Krongauz, V. Weiss, Chem. Rev. 100, 1741 (2000) CrossRefGoogle Scholar
  8. 8.
    H. Bouas-Laurent, H. Dürr, Pure Appl. Chem. 73, 639 (2001) CrossRefGoogle Scholar
  9. 9.
    B.L. Feringa, R.A. van Delden, N. Koumura, E.M. Geertsema, Chem. Rev. 100, 1789 (2000) CrossRefGoogle Scholar
  10. 10.
    M. Irie, Chem. Rev. 100, 1685 (2000) CrossRefGoogle Scholar
  11. 11.
    D.A. Parthenopoulos, P.M. Rentzepis, Science 245, 843 (1989) CrossRefADSGoogle Scholar
  12. 12.
    C.J. Wohl, D. Kuciauskas, J. Phys. Chem. B 109, 21893 (2005) CrossRefGoogle Scholar
  13. 13.
    M. Rini, A.K. Holm, E.T.J. Nibbering, H. Fidder, J. Am. Chem. Soc. 125, 3028 (2003) CrossRefGoogle Scholar
  14. 14.
    A. Eilmes, J. Phys. Chem. A 117, 2629 (2013) CrossRefGoogle Scholar
  15. 15.
    J. Kohl-Landgraf, M. Braun, C. Özçoban, D.P.N. Gonçalves, A. Heckel, J. Wachtveitl, J. Am. Chem. Soc. 134, 14070 (2012) CrossRefGoogle Scholar
  16. 16.
    J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, T. Brixner, J. Am. Chem. Soc. 132, 16510 (2010) CrossRefGoogle Scholar
  17. 17.
    J. Hobley, U. Pfeifer-Fukumura, M. Bletz, T. Asahi, H. Masuhara, H. Fukumura, J. Phys. Chem. A 106, 2265 (2002) CrossRefGoogle Scholar
  18. 18.
    A.K. Chibisov, H. Gorner, J. Phys. Chem. A 101, 4305 (1997) CrossRefGoogle Scholar
  19. 19.
    M. Bletz, U. Pfeifer-Fukumura, U. Kolb, W. Baumann, J. Phys. Chem. A 106, 2232 (2002) CrossRefGoogle Scholar
  20. 20.
    B. Seefeldt, R. Kasper, M. Beining, J. Mattay, J. Arden-Jacob, N. Kemnitzer, K.H. Drexhage, M. Heilemann, M. Sauer, Science 9, 213 (2010) Google Scholar
  21. 21.
    V.I. Minkin, Chem. Rev. 104, 2751 (2004) CrossRefGoogle Scholar
  22. 22.
    V.A. Barachevskiy, G.I. Lashko, V.A. Cehomskiy, Photochromism and its application (Khimia, Moscow, Russia, 1977) Google Scholar
  23. 23.
    Y. Shiraishi, K. Yamamoto, S. Sumiya, T. Hirai, Phys. Chem. Chem. Phys. 16, 12137 (2014) CrossRefGoogle Scholar
  24. 24.
    S. Heng, C.A. McDevitt, D.B. Stubing, J.J. Whittall, J.G. Thompson, T.K. Engler, A.D. Abell, T.M. Monro, Biomacromolecules 14, 3376 (2013) CrossRefGoogle Scholar
  25. 25.
    J.D. Winkler, C.M. Bowen, V. Michelet, J. Am. Chem. Soc. 120, 3237 (1998) CrossRefGoogle Scholar
  26. 26.
    S. Scarmagnani, Z. Walsh, C. Slater, N. Alhashimy, B. Paull, B. Macka, D. Diamond, J. Mater. Chem. 18, 5063 (2008) CrossRefGoogle Scholar
  27. 27.
    Y. Shiraishi, K. Adachi, M. Itoh, T. Hirai, Org. Lett. 11, 3482 (2009) CrossRefGoogle Scholar
  28. 28.
    J. Lee, E.J. Choi, I. Kim, M. Lee, C. Satheeshkumar, C. Song, Sensors 17, 1816 (2017) CrossRefGoogle Scholar
  29. 29.
    O. Ivashenko, J.T. van Herpt, B.L. Feringa, P. Rudolf, W.R. Browne, J. Phys. Chem. C 117, 18567 (2013) CrossRefGoogle Scholar
  30. 30.
    M. Riskin, V. Gutkin, I. Felner, I. Willner, Angew. Chem. Int. Ed. 47, 4416 (2008) CrossRefGoogle Scholar
  31. 31.
    F.M. Raymo, R.J. Alvarado, S. Giordani, M.A. Cejas, J. Am. Chem. Soc. 125, 2361 (2003) CrossRefGoogle Scholar
  32. 32.
    K.Y. Tomizaki, H. Mihara, J. Am. Chem. Soc. 129, 8345 (2007) CrossRefGoogle Scholar
  33. 33.
    D. Pisignano, E. Mele, L. Persano, A. Athanassiou, C. Fotakis, R. Cingolani, J. Phys. Chem. B 110, 4506 (2006) CrossRefGoogle Scholar
  34. 34.
    I. Willner, Acc. Chem. Res. 30, 347 (1997) CrossRefGoogle Scholar
  35. 35.
    K. Fukushima, A.J. Vandenbos, T. Fujiwara, Chem. Mater. 19, 644 (2007) CrossRefGoogle Scholar
  36. 36.
    G. Wen, J. Yan, Y. Zhou, D. Zhang, L. Mao, D. Zhu, Chem. Commun. 2006, 3016 (2006) CrossRefGoogle Scholar
  37. 37.
    Y. Bardavid, I. Goykhman, D. Nozaki, G. Cuniberti, S. Yitzchaik, J. Phys. Chem. C 115, 3123 (2011) CrossRefGoogle Scholar
  38. 38.
    L. Zhu, W. Wu, M.-Q. Zhu, J.J. Han, J.K. Hurst, A.D.Q. Li, J. Am. Chem. Soc. 129, 3524 (2007) CrossRefGoogle Scholar
  39. 39.
    M.-Q. Zhu, L. Zhu, J.J. Han, W. Wu, J.K. Hurst, A.D.Q. Li, J. Am. Chem. Soc. 128, 4303 (2006) CrossRefGoogle Scholar
  40. 40.
    C. Özçoban, T. Halbritter, S. Steinwand, L.M. Herzig, J. Kohl-Landgraf, N. Askari, F. Groher, B. Fürtig, C. Richter, H. Schwalbe, B. Suess, Google Scholar
  41. 41.
    G. Petriashvili, L. Devadze, T. Zurabishvili, N. Sepashvili, K. Chubinidze, Biomed. Opt. Express 7, 442 (2016) CrossRefGoogle Scholar
  42. 42.
    S. Barman, J. Das, S. Biswas, T.K. Maitib, N.D. Pradeep Singh, J. Mater. Chem. B 5, 3940 (2017) CrossRefGoogle Scholar
  43. 43.
    J.W. Hewage, Eur. Phys. J. D 67, 181 (2013) CrossRefADSGoogle Scholar
  44. 44.
    M. Sanchez-Lozano, C.M. Estevez, J. Hermida-Ramon, L. Serrano-Andres, J. Phys. Chem. A 115, 9128 (2011) CrossRefGoogle Scholar
  45. 45.
    S. Prager, I. Burghardt, A. Dreuw, J. Phys. Chem. A 118, 1339 (2014) CrossRefGoogle Scholar
  46. 46.
    Y. Sheng, J. Leszczynski, J. Phys. Chem. B 108, 16233 (2004) CrossRefGoogle Scholar
  47. 47.
    K.K. Kalninsh, J. Struct. Chem. 36, 787 (1998) Google Scholar
  48. 48.
    G. Zhai, S. Shao, S. Wu, Y. Lei, Y. Dou, Int. J. Photoenergy 2014, 541791 (2014) CrossRefGoogle Scholar
  49. 49.
    I. Gómez, M. Reguero, M.A. Robb, J. Phys. Chem. A 110, 3986 (2006) CrossRefGoogle Scholar
  50. 50.
    G. Cottone, R. Noto, G. La Manna, Chem. Phys. Lett. 388, 218 (2004) CrossRefADSGoogle Scholar
  51. 51.
    Y. Futami, M.L.S. Chin, S. Kudoh, M. Takayanagi, M. Nakata, Chem. Phys. Lett. 370, 460 (2003) CrossRefADSGoogle Scholar
  52. 52.
    P.-X. Wang, F.-Q. Bai, Z.-X. Zhang, Y.-P. Wang, J. Wang, H.-X. Zhang, Org. Electron. 45, 33 (2017) CrossRefGoogle Scholar
  53. 53.
    A.V. Dmitriev, P.A. Kondratenko, Yu.M. Lopatkin, A.V. Glushkov, Sens. Electron. Microsyst. Technol. 2, 54 (2011) CrossRefGoogle Scholar
  54. 54.
    O. Kovalenko, P. Kondratenko, Y. Lopatkin, Int. J. Photoenergy 2015, 161248 (2015) Google Scholar
  55. 55.
    M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart J. Am. Chem. Soc. 107, 3902 (1985) CrossRefGoogle Scholar
  56. 56.
    V.A. Blatov, A.P. Shevchenko, E.V. Peresipkina, Semi-empirical computational methods in quantum chemistry (Univers-Group, Samara, Russia, 2005), p. 32 Google Scholar
  57. 57.
    V.A. Blatov, Nonempirical computational methods in quantum chemistry (Samara University, Samara, Russia, 1996) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Olha Kovalenko
    • 1
    • 2
    Email author
  • Yuriy Lopatkin
    • 1
  • Petro Kondratenko
    • 3
  • Dmitro Belous
    • 4
  1. 1.Department of General and Theoretical PhysicsSumy State UniversitySumyUkraine
  2. 2.Departament de Química Física i Inorgànica, Universitat Rovira i VirgiliTarragonaSpain
  3. 3.Department of Theoretical and Applied PhysicsAerospace Institute, National Aviation UniversityKyivUkraine
  4. 4.Department of Modeling of Complex Systems and Applied PhysicsSumy State UniversitySumyUkraine

Personalised recommendations