Unified solution of the Boltzmann equation for electron and ion velocity distribution functions and transport coefficients in weakly ionized plasmas

  • Dmitry A. Konovalov
  • Daniel G. Cocks
  • Ronald D. WhiteEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue: Physics of Ionized Gases (SPIG 2016)


The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann’s equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann’s equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged.

Graphical abstract


  1. 1.
    L.A. Viehland, Comput. Phys. Commun. 142, 7 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    L.L. Alves, K. Bartschat, S.F. Biagi, M.C. Bordage, L.C. Pitchford, C.M. Ferreira, G.J.M. Hagelaar, W.L. Morgan, S. Pancheshnyi, A.V. Phelps, V. Puech, O. Zatsarinny, J. Phys. D: Appl. Phys. 46, 334002 (2013)CrossRefGoogle Scholar
  3. 3.
    J. de Urquijo, E. Basurto, A.M. Juárez, K.F. Ness, R.E. Robson, M.J. Brunger, R.D. White, J. Chem. Phys. 141, 014308 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    T. Makabe Z.L. Petrović, Plasma electronics, 2nd ed. (CRC Press, 2015)Google Scholar
  5. 5.
    L.G.H. Huxley, R.W. Crompton, The diffusion and drift of electrons in gases (Wiley, New York, 1974)Google Scholar
  6. 6.
    E.A. Mason, E.W. McDaniel, Transport Properties of Ions in Gases (Wiley, New York, 1988) p. 471Google Scholar
  7. 7.
    Z.L. Petrović, S. Dujko, D. Marić, G. Malović, Ž. Nikitović, O. Šašić, J. Jovanović, V. Stojanović, M. Radmilović-Radenović, J. Phys. D: Appl. Phys. 42, 194002 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    L.A. Viehland, Int. J. Ion Mobil. Spectrom. 19, 11 (2015)CrossRefGoogle Scholar
  9. 9.
    P.J. Bruggeman, M.J. Kushner, B.R. Locke, J.G.E. Gardeniers, W.G. Graham, D.B. Graves, R.C. H.M. Hofman-Caris, D. Maric, J.P. Reid, E. Ceriani, D. Fernandez Rivas, J.E. Foster, S.C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. Mededovic Thagard, D. Minakata, E.C. Neyts, J. Pawlat, Z.L. Petrovic, R. Pflieger, S. Reuter, D.C. Schram, S. Schröter, M. Shiraiwa, B. Tarabová, P.A. Tsai, J.R.R. Verlet, T. von Woedtke, K.R. Wilson, K. Yasui, G. Zvereva, Plasma Source Sci. Technol. 25, 053002 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J.C. Whitehead, A.B. Murphy, A.F. Gutsol, S. Starikovskaia, U. Kortshagen, J.-P. Boeuf, T.J. Sommerer, M.J. Kushner, U. Czarnetzki, N. Mason, J. Phys. D: Appl. Phys. 45, 253001 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    R.D. White, M.J. Brunger, N.A. Garland, R.E. Robson, K.F. Ness, G. Garcia, J. de Urquijo, S. Dujko, Z.L. Petrović, Eur. Phys. J. D 68, 125 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    P. Thorn, L. Campbell, M. Brunger, PMC Phys. B 2, 1 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    H. Wang, V.S. Sukhomlinov, I.D. Kaganovich, A.S. Mustafaev, Plasma Sources Sci. Technol. 26, 024002 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    M. Yousfi, N. Merbahi, A. Pathak, O. Eichwald, Fundam. Clin. Pharmacol. 28, 123 (2014)CrossRefGoogle Scholar
  15. 15.
    W. Tian, M.J. Kushner, J. Phys. D: Appl. Phys. 47, 165201 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    A. Lindsay, D. Graves, S. Shannon, J. Phys. D: Appl. Phys. 49, 235204 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    J.-P. Boeuf, L.L. Yang, L.C. Pitchford, J. Phys. D: Appl. Phys. 46, 015201 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    G. Garcia, Z.L. Petrovic, R.D. White, S.J. Buckman, IEEE Trans. Plasma Sci. 39, 2962 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    F. Salvat, J.M. Fernández-Varea, J. Sempau, J. Mazurier, Radiat. Environ. Biophys. 38, 15 (1999)CrossRefGoogle Scholar
  20. 20.
    V.A. Semenenko, J.E. Turner, T.B. Borak, Radiat. Environ. Biophys. 42, 213 (2003)CrossRefGoogle Scholar
  21. 21.
    S. Biagi, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom., Detect. Assoc. Equip. 421, 234 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    Z.L. Petrović, S. Marjanović, S. Dujko, A. Banković, G. Malović, S. Buckman, G. Garcia, R. White, M. Brunger, Appl. Radiat. Isot. 83, 148 (2013)CrossRefGoogle Scholar
  23. 23.
    Z. Ristivojevic, Z.L. Petrović, Plasma Source Sci. Technol. 21, 035001 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    A.H. Markosyan, J. Teunissen, S. Dujko, U. Ebert, Plasma Source Sci. Technol. 24, 065002 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    A.S. Mustafaev, V.S. Sukhomlinov, M.A. Ainov, Techn. Phys. 60, 1778 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    S. Dujko, R.D. White, Z.L. Petrović, R.E. Robson, Z.L. Petrovi, Plasma Source Sci. Technol. 20, 024013 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    S. Dujko, D. Bošnjaković, R.D. White, Z. Lj Petrović, Plasma Source Sci. Technol. 24, 054006 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    S. Dujko, R. White, Z. Petrović, J. Phys. D: Appl. Phys. 41, 245205 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    S. Dujko, Z.M. Raspopović, R.D. White, T. Makabe, Z.L. Petrović, Eur. Phys. J. D 68, 166 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    D. Bošnjaković, Z.L. Petrović, R.D. White, S. Dujko, J. Phys. D: Appl. Phys. 47, 435203 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    G.J. Boyle, W.J. Tattersall, D.G. Cocks, S. Dujko, R.D. White, Phys. Rev. A 91, 052710 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    R.D. White, R.E. Robson, K.F. Ness, Phys. Rev. E 60, 7457 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    R.D. White, R.E. Robson, K.F. Ness, B. Li, Phys. Rev. E 60, 2231 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    R.D. White, Phys. Rev. E 64, 56409 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    R.D. White, R.E. Robson, K.F. Ness, Comput. Phys. Commun. 142, 349 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    R.D. White, R.E. Robson, Phys. Rev. E 84, 031125 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    R.D. White, R.E. Robson, P. Nicoletopoulos, S. Dujko, Eur. Phys. J. D 66, 117 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    R.D. White, R.E. Robson, B. Schmidt, M. Morrison, J. Phys. D: Appl. Phys. 36, 3125 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)ADSCrossRefGoogle Scholar
  40. 40.
    D. Else, R. Kompaneets, S.V. Vladimirov, Phys. Plasmas 16, 062106 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    R.R. Arslanbekov, V.I. Kolobov, A.A. Frolova, Phys. Rev. E 88, 063301 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    L.A. Viehland, Chem. Phys. 179, 71 (1994)ADSCrossRefGoogle Scholar
  43. 43.
    H.R. Skullerud, Plasma Sources Sci. Technol. 26, 045003 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    K. Kumar, Ann. Phys. 37, 113 (1966)ADSCrossRefGoogle Scholar
  45. 45.
    K. Kumar, J. Math. Phys. 7, 671 (1966)ADSCrossRefGoogle Scholar
  46. 46.
    K. Kumar, Aust. J. Phys. 20, 205 (1967)ADSCrossRefGoogle Scholar
  47. 47.
    R. Robson K. Ness, Phys. Rev. A 33, 2068 (1986)ADSCrossRefGoogle Scholar
  48. 48.
    K.F. Ness, R.E. Robson, Phys. Rev. A 34, 2185 (1986)ADSCrossRefGoogle Scholar
  49. 49.
    R.E. Robson, K. Kumar, Aust. J. Phys. 24, 835 (1971)ADSCrossRefGoogle Scholar
  50. 50.
    L.A. Viehland, E.A. Mason, Ann. Phys. 91, 499 (1975)ADSCrossRefGoogle Scholar
  51. 51.
    L.A. Viehland, E.A. Mason, Ann. Phys. 110, 287 (1978)ADSCrossRefGoogle Scholar
  52. 52.
    S.L. Lin, L.A. Viehland, E.A. Mason, Chem. Phys. 37, 411 (1979)ADSCrossRefGoogle Scholar
  53. 53.
    S.L. Lin, R.E. Robson, E.A. Mason, J. Chem. Phys. 66, 435 (1979)CrossRefGoogle Scholar
  54. 54.
    T. Kihara, Rev. Mod. Phys. 25, 844 (1953)ADSCrossRefGoogle Scholar
  55. 55.
    K. Kumar, R.E. Robson, Aust. J. Phys. 26, 157 (1973)ADSCrossRefGoogle Scholar
  56. 56.
    D.C. Kelly, Phys. Rev. 119, 27 (1960)ADSCrossRefMathSciNetGoogle Scholar
  57. 57.
    K.D. Knierim, J. Chem. Phys. 75, 1159 (1981)ADSCrossRefGoogle Scholar
  58. 58.
    K.F. Ness, L.A. Viehland, Chem. Phys. 148, 225 (1990)ADSCrossRefGoogle Scholar
  59. 59.
    K.F. Ness, J. Phys. D: Appl. Phys. 27, 1848 (1994)ADSCrossRefGoogle Scholar
  60. 60.
    R.E. Robson, M.J. Brunger, S.J. Buckman, G. Garcia, Z.L. Petrović, R.D. White, Scient. Rep. 5, 12674 (2015)ADSCrossRefGoogle Scholar
  61. 61.
    R.E. Robson, Introductory Transport Theory for Charged Particles in Gases (World Scientific Publishing, Singapore, 2006)Google Scholar
  62. 62.
    S. Chapman T.G. Cowling,The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge Mathematical Library (Cambridge University Press, 1970)Google Scholar
  63. 63.
    L.C. Pitchford, S.V. ONeil, J.R. Rumble, Phys. Rev. A 23, 294 (1981)ADSCrossRefGoogle Scholar
  64. 64.
    L.D. Landau, E.M. Lifshitz, Mechanics, Course of Theoretical Physics, 3rd ed. (Pergamon Press, Oxford, 1976), Vol. 1Google Scholar
  65. 65.
    E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics, Course of Theoretical Physics (Pergamon Press, Oxford, 1981), Vol. 10Google Scholar
  66. 66.
    A.R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd ed. (Princeton University Press, Princeton, 1974)Google Scholar
  67. 67.
    DLMF, “NIST Digital Library of Mathematical Functions,”, Release 1.0.13 of 2016-09-16, F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller, B.V. Saunders, eds.Google Scholar
  68. 68.
    V.I. Lebedev, D. Laikov, Doklady Math. 59, 477 (1999)Google Scholar
  69. 69.
    R.D. White, R.E. Robson, S. Dujko, P. Nicoletopoulos, B. Li, J. Phys. D: Appl. Phys. 42, 194001 (2009)ADSCrossRefGoogle Scholar
  70. 70.
    D. Burnett, Proc. London Math. Soc. s2-39, 385 (1935)CrossRefGoogle Scholar
  71. 71.
    D. Burnett, Proc. London Math. Soc. s2-40, 382 (1936)CrossRefGoogle Scholar
  72. 72.
    W. Tattersall, D.G. Cocks, G.J. Boyle, S.J. Buckman, R.D. White, Phys. Rev. E 91, 043304 (2015)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Dmitry A. Konovalov
    • 1
  • Daniel G. Cocks
    • 2
    • 3
  • Ronald D. White
    • 3
    Email author
  1. 1.Information Technology Academy, James Cook UniversityTownsvilleAustralia
  2. 2.College of Science and Engineering, James Cook UniversityTownsvilleAustralia
  3. 3.College of Chemical and Physical Sciences, Flinders UniversityAdelaideAustralia

Personalised recommendations