On the strong influence of molecular interactions over large distances

Abstract

Molecular-dynamics simulations of liquid water show deterministic chaos, i.e. an intentionally introduced molecular position shift of an individual molecule increases exponentially by a factor of 10 in 0.23 ps. This is a Lyaponov instability. As soon as it reaches molecular scale, the direction of the resulting shift in molecular motions is unpredictable. The influence of any individual distant particle on an observed molecule will be minute, but the effect will quickly increase to molecular scale and beyond due to this exponential growth. Consequently, any individual particle in the universe will affect the behavior of any molecule within at most 33 ps after the interaction reaches it. A larger distance of the faraway particle does not decrease the influence on an observed molecule, but the effect reaches molecular scale only some ps later. Thus in evaluating the interactions, nearby and faraway molecules have to be equally accounted for. The consequences of this quickly reacting network of interactions on universal scale are fundamental. Even in a strictly deterministic view, molecular behavior is principally unpredictable, and thus has to be regarded random. Corresponding statements apply for any particles interacting. This result leads to a fundamental rethinking of the structure of interactions of molecules and particles as well as the behavior of reality.

Graphical abstract

References

  1. 1.

    M.P. Allen, D.J. Tildesley, Computer simulations in liquids (Clarendon Press, Oxford, 1987)

  2. 2.

    M. Thol, G. Rutkai, R. Span, J. Vrabec, R. Lustig, Int. J. Thermophys. 36, 25 (2015)

    ADS  Article  Google Scholar 

  3. 3.

    J.C. Palmer, F. Martelli, Y. Liu, R. Car, A.Z. Panagiotopoulos, P.G. Debenedetti, Nature 510, 385 (2014)

    ADS  Article  Google Scholar 

  4. 4.

    A. Pfennig, Mol. Simul. 30, 361 (2004)

    Article  Google Scholar 

  5. 5.

    G. Yin, W. Herfel, Constructing post-classical ecosystems ecology, in Philosophy of complex systems, edited by C. Hooker (Elsevier, Amsterdam, 2011)

  6. 6.

    E. Lorenz, The butterfly effect, in The chaos avant-garde: memories of the early days of chaos theory, edited by R. Abraham, Y. Ueda (World Scientific, Singapore, 2000)

  7. 7.

    R.C. Bishop, Erkenntnis 58, 169 (2003)

    Article  Google Scholar 

  8. 8.

    J.P. Crutchfield, Observing complexity and the complexity of observation, in Inside versus outside, edited by H. Atmanspacher, G.J. Dalenoort (Springer, Berlin, 1994)

  9. 9.

    J.A. White, J. Chem. Phys. 111, 9352 (1999)

    ADS  Article  Google Scholar 

  10. 10.

    W. Smith, D. Fincham, ftp://ftp.dl.ac.uk/ccp5/MDMPOL (1982)

  11. 11.

    J.L.F. Abascal, C. Vega, J. Chem. Phys. 123, 234505 (2005)

    ADS  Article  Google Scholar 

  12. 12.

    GNU, Fortran compiler, https://gcc.gnu.org/ (2016)

  13. 13.

    W.G. Hoover, Nonequilibrium molecular dynamics: the first 25 years. Manuscript UCRL-JC-Preprint CONF-9208276-1, in Proceedings of the 18th IUPAP International Conference on Statistical Physics, August 2–8, Berlin, Germany (1992)

  14. 14.

    G. Sutmann, Molecular dynamics – vision and reality, in Computational nanoscience: do it yourself! NIC series, edited by J. Grotendorst, S. Blügel, D. Marx (John von Neumann Institute for Computing, Jülich, 2006), Vol. 31, pp. 159–194

  15. 15.

    D. Frenkel, arXiv:1211.4440v1 (2012)

  16. 16.

    D.J. Evans, D.J. Searles, Adv. Phys. 51, 1529 (2002)

    ADS  Article  Google Scholar 

  17. 17.

    A.C. Scott, The nonlinear universe: chaos, emergence, life (Springer, Berlin, 2007)

  18. 18.

    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman lectures on physics (Addison-Wesley Publishing, Reading, 1963)

  19. 19.

    R.A. Jalabert, H.M. Pastawski, Phys. Rev. Lett. 86, 2490 (2001)

    ADS  Article  Google Scholar 

  20. 20.

    K. Ramasesha, L. De Marco, A. Mandal, A. Tokmakoff, Nat. Chem. 5, 935 (2013)

    Article  Google Scholar 

  21. 21.

    E. Nelson, Phys. Rev. 140, 1079 (1966)

    ADS  Article  Google Scholar 

  22. 22.

    E. Nelson, J. Phys.: Conf. Ser. 361, 012011 (2012)

    Google Scholar 

  23. 23.

    G.F. Dietze, J. Fluid Mech. 789, 368 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    J.W.M. Bush, Annu. Rev. Fluid Mech. 47, 269 (2015)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andreas Pfennig.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pfennig, A. On the strong influence of molecular interactions over large distances. Eur. Phys. J. D 72, 45 (2018). https://doi.org/10.1140/epjd/e2017-80293-4

Download citation

Keywords

  • Nonlinear Dynamics