Advertisement

Quantum secret sharing for a general quantum access structure

  • Chen-Ming Bai
  • Zhi-Hui LiEmail author
  • Meng-Meng Si
  • Yong-Ming Li
Regular Article

Abstract

Quantum secret sharing is a procedure for sharing a secret among a number of participants such that only certain subsets of participants can collaboratively reconstruct it, which are called authorized sets. The quantum access structure of a secret sharing is a family of all authorized sets. Firstly, in this paper, we propose the concept of decomposition of quantum access structure to design a quantum secret sharing scheme. Secondly, based on a maximal quantum access structure (MQAS) [D. Gottesman, Phys. Rev. A 61, 042311 (2000)], we propose an algorithm to improve a MQAS and obtain an improved maximal quantum access structure (IMQAS). Then, we present a sufficient and necessary condition about IMQAS, which shows the relationship between the minimal authorized sets and the players. In accordance with properties, we construct an efficient quantum secret sharing scheme with a decomposition and IMQAS. A major advantage of these techniques is that it allows us to construct a method to realize a general quantum access structure. Finally, we present two kinds of quantum secret sharing schemes via the thought of concatenation or a decomposition of quantum access structure. As a consequence, we find that the application of these techniques allows us to save more quantum shares and reduces more cost than the existing scheme.

Graphical abstract

Keywords

Quantum Information 

References

  1. 1.
    A. Shamir, Commun. ACM 22, 612 (1979) CrossRefGoogle Scholar
  2. 2.
    G.R. Blakley, in Proc. of the National Computer Conference, America (1979), pp. 313–317 Google Scholar
  3. 3.
    M. Hillery, V. Buzek, A. Berthiaume, Phys. Rev. A 59, 1829 (1999) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Cleve, D. Gottesman, H.-K. Lo, Phys. Rev. Lett. 83, 648 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    D. Gottesman, Phys. Rev. A 61, 042311 (2000) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Karlsson, M. Koashi, N. Imoto, Phys. Rev. A 59, 162 (1999) ADSCrossRefGoogle Scholar
  7. 7.
    W.K. Wootters, W.H. Zurek, Nature 299, 802 (1982) ADSCrossRefGoogle Scholar
  8. 8.
    D. Dieks, Phys. Lett. A 92, 271 (1982) ADSCrossRefGoogle Scholar
  9. 9.
    M. Zukowski, A. Zeilinger, M.A. Horne et al., Acta Phys. Pol. A 93, 187 (1998) CrossRefGoogle Scholar
  10. 10.
    L. Xiao, G.L. Long, F.G. Deng, J.W. Pan, Phys. Rev. A 69, 052307 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    F.G. Deng, X.H. Li, C.Y. Li et al., Phys. Rev. A 72, 044301 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    G. Gordon, G. Rigolin, Phys. Rev. A 73, 062316 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    V. Gheorghiu, B.C. Sanders, Phys. Rev. A 88, 022340 (2013) ADSCrossRefGoogle Scholar
  14. 14.
    H.W. Qin, X.H. Zhu, Y.W. Dai, Quantum Inf. Process. 14, 2997 (2015) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Ray, S. Chatterjee, I. Chakrabarty, Eur. Phys. J. D 70, 1 (2016) CrossRefGoogle Scholar
  16. 16.
    R. Rahaman, M.G. Parker, Phys. Rev. A 91, 022330 (2015) ADSCrossRefGoogle Scholar
  17. 17.
    V. Gheorghiu, Phys. Rev. A 85, 052309 (2012) ADSCrossRefGoogle Scholar
  18. 18.
    A. Tavakoli, I. Herbauts, M. Zukowski, M. Bourennane, Phys. Rev. A 92, 030302(R) (2015) ADSCrossRefGoogle Scholar
  19. 19.
    F.G. Deng, H.Y. Zhou, J. Phys. A: Math. Gen. 39, 14089 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    J. Bogdanski, N. Rafiei, M. Bourennane, Phys. Rev. A 78, 062307 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    C. Schmid et al., Phys. Rev. Lett. 95, 230505 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    I.C. Yu, F.L. Lin, C.Y. Huang, Phys. Rev. A 78, 012344 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    A. Maitra, S.J. De, G. Paul, A.K. Pal, Phys. Rev. A 92, 022305 (2015) ADSCrossRefGoogle Scholar
  24. 24.
    H.W. Qin, Y.W. Dai, Quantum Inf. Process. 15, 1689 (2016) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    L.Y. Hsu, C.M. Li, Phys. Rev. A 71, 022321 (2005) ADSCrossRefGoogle Scholar
  26. 26.
    V. Karimipour, M. Asoudeh, Phys. Rev. A 92, 030301(R) (2015) ADSCrossRefGoogle Scholar
  27. 27.
    G.L. Long, X.S. Liu, Phys. Rev. A 65, 032302 (2002) ADSCrossRefGoogle Scholar
  28. 28.
    C. Blundo, A.D. Santis, D.R. Stinson, U. Vaccaro, J. Cryptol. 8, 39 (1995) CrossRefGoogle Scholar
  29. 29.
    W.A. Jackson, K.M. Martin, Des. Codes Cryptogr. 9, 267 (1996) MathSciNetGoogle Scholar
  30. 30.
    J. Martí-Farré, C. Padró, Des. Codes Cryptogr. 34, 17 (2005) MathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Smith, arXiv:quant-ph/0001087 (2000)
  32. 32.
    A. Marin, D. Markham, S. Perdrix, in TQC 2013 – 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (2013), Vol. 22, pp. 308–324 Google Scholar
  33. 33.
    G.D. Crescenzo, C. Galdi, Discrete Appl. Math. 157, 928 (2009) MathSciNetCrossRefGoogle Scholar
  34. 34.
    C.M. Bai, Z.H. Li et al., Int. J. Theor. Phys. 55, 4972 (2016) CrossRefGoogle Scholar
  35. 35.
    Y.G. Yang, Y. Wang, H.P. Chai et al., Opt. Commun. 284, 3479 (2011) ADSCrossRefGoogle Scholar
  36. 36.
    J.L. Hsu, S.K. Chong, T. Hwang et al., Quantum Inf. Process. 12, 331 (2013) ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    H.Y. Jia, Q.Y. Wen, F. Gao et al., Phys. Lett. A 376, 1035 (2012) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Chen-Ming Bai
    • 1
  • Zhi-Hui Li
    • 1
    Email author
  • Meng-Meng Si
    • 1
  • Yong-Ming Li
    • 2
  1. 1.College of Mathematics and Information Science, Shaanxi Normal UniversityXi’anP.R. China
  2. 2.College of Computer Science, Shaanxi Normal UniversityXi’anP.R. China

Personalised recommendations