Advertisement

Impact of the cavitation bubble on a plasma emission following laser ablation in liquid

  • Marijana R. GavrilovićEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue: Physics of Ionized Gases (SPIG 2016)

Abstract

In this work, the impact of the cavitation bubble on a plasma emission produced after the interaction of the strong focused laser radiation with the target in the liquid was studied. Several experimental techniques were applied to assess different aspects of the complex phenomena of the laser induced breakdown in the liquid media. The results of the fast photography, Schlieren and shadowgraphy techniques were compared with the results of simpler probe beam techniques, transmission and scattering. In addition, emission from the plasma was analysed using optical emission spectroscopy, with aim to relate the quality of the recorded spectral lines to the bubble properties. Bubble had proved to be more convenient surrounding than the liquid for the long lasting plasma emission, due to the high temperature and pressure state inside of it and significantly lower density, which causes less confined plasma. Changes in refractive index of the bubble were also monitored, although in the limited time interval, when the bubble was sufficiently expanded and the refractive index difference between the bubble and the water was large enough to produce glory rings and the bright spot in the bubble’s centre. Reshaping of the plasma emission due to the optical properties of the bubble was detected and the need for careful optimization of the optical system was stressed.

Graphical abstract

References

  1. 1.
    A. De Giacomo, M. Dell’Aglio, R. Gaudiuso, S. Amoruso, O. De Pascale, Spectrochim. Acta B 78, 1 (2012) ADSCrossRefGoogle Scholar
  2. 2.
    S.-B. Wen, X. Mao, R. Greif, R.E. Russo, J. Appl. Phys. 101, 023114 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    S.-B. Wen, X. Mao, R. Greif, R.E. Russo, J. Appl. Phys. 101, 023115 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    A.J. Effenberger Jr., J.R. Scott, Sensors 10, 4907 (2010) CrossRefGoogle Scholar
  5. 5.
    F.J. Fortes, J. Moros, P. Lucena, L.M. Cabalín, J.J. Laserna, Anal. Chem. 85, 640 (2013) CrossRefGoogle Scholar
  6. 6.
    S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Appl. Phys. 93, 2380 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Phys. D: Appl. Phys. 35, 2935 (2002) CrossRefGoogle Scholar
  8. 8.
    V.V. Maksimov, A.M. Orishich, A.G. Ponomarenko, V.N. Snytnikov, Sov. Phys. JETP 69, 712 (1989) Google Scholar
  9. 9.
    X. Gao, L. Liu, C. Song, J. Lin, J. Phys. D: Appl. Phys. 48, 175205 (2015) ADSCrossRefGoogle Scholar
  10. 10.
    S.J. Choi, K.J. Lee, J.J. Yoh, Spectrochim. Acta B 97, 113 (2014) ADSCrossRefGoogle Scholar
  11. 11.
    P. Kennedy, D. Hammer, B. Rockwell, Prog. Quantum Electron. 21, 155 (1997) ADSCrossRefGoogle Scholar
  12. 12.
    A. Vogel, V. Venugopalan, Chem. Rev. 103, 577 (2003) CrossRefGoogle Scholar
  13. 13.
    V. Nuzzo, M. Savoldelli, J.-M. Legeais, K. Plamann, J. Biomed. Opt. 15, 038003 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    A. Kruusing, Opt. Lasers Eng. 41, 307 (2004) CrossRefGoogle Scholar
  15. 15.
    A. Kruusing, Opt. Lasers Eng. 41, 329 (2004) CrossRefGoogle Scholar
  16. 16.
    K. Sasaki, N. Takada, Pure Appl. Chem. 82, 1317 (2010) CrossRefGoogle Scholar
  17. 17.
    H. Zeng, X.-W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Adv. Funct. Mater. 22, 1333 (2012) CrossRefGoogle Scholar
  18. 18.
    V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 15, 3027 (2013) CrossRefGoogle Scholar
  19. 19.
    M. Dell’Aglio, R. Gaudiuso, O. De Pascale, A. De Giacomo, Appl. Surf. Sci. 348, 4 (2015) CrossRefGoogle Scholar
  20. 20.
    R. Tanabe, T.T.P. Nguyen, T. Sugiura, Y. Ito, Appl. Surf. Sci. 351, 327 (2015) CrossRefGoogle Scholar
  21. 21.
    S. Kohsakowski, B. Gökce, R. Tanabe, P. Wagener, A. Plech, Y. Ito, S. Barcikowski, Phys. Chem. Chem. Phys. 18, 16585 (2016) CrossRefGoogle Scholar
  22. 22.
    J. Lam, J. Lombard, C. Dujardin, G. Ledoux, S. Merabia, D. Amans, Appl. Phys. Lett. 108, 074104 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    A. De Giacomo, M. Dell’Aglio, A. Santagata, R. Gaudiuso, O. De Pascale, P. Wagener, G.C. Messina, G. Compagnini, S. Barcikowski, Phys. Chem. Chem. Phys. 13, 3083 (2013) CrossRefGoogle Scholar
  24. 24.
    R. Petkovšek, P. Gregorčič, J. Možina, Meas. Sci. Technol. 18, 2972 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    C.S. Peel, X. Fang, S.R. Ahmad, Appl. Phys. A 103, 1131 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    R. Petkovšek, P. Gregorčič, J. Appl. Phys. 102, 044909 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    A. De Giacomo, M. Dell’Aglio, O. De Pascale, M. Capitelli, Spectrochim. Acta B 62, 721 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    V. Lazic, J.J. Laserna, S. Jovicevic, Spectrochim. Acta B 82, 42 (2013) ADSCrossRefGoogle Scholar
  29. 29.
    V. Lazic, J.J. Laserna, S. Jovicevic, Spectrochim. Acta B 82, 50 (2013) ADSCrossRefGoogle Scholar
  30. 30.
    A. Tamura, A. Matsumoto, K. Fukami, N. Nishi, T. Sakka, J. Appl. Phys. 117, 173304 (2015) ADSCrossRefGoogle Scholar
  31. 31.
    M.R. Gavrilović, M. Cvejić, V. Lazic, S. Jovićević, Phys. Chem. Chem. Phys. 18, 14629 (2016) CrossRefGoogle Scholar
  32. 32.
    M.R. Gavrilović, V. Lazic, S. Jovićević, J. Anal. At. Spectrom. 32, 345 (2017) CrossRefGoogle Scholar
  33. 33.
    T. Sakka, K. Takatani, Y.H. Ogata, M. Mabuchi, J. Phys. D: Appl. Phys. 35, 65 (2002) ADSCrossRefGoogle Scholar
  34. 34.
    T. Tsuji, Y. Okazaki, Y. Tsuboi, M. Tsuji, Jpn. J. Appl. Phys. 46, 1533 (2007) ADSCrossRefGoogle Scholar
  35. 35.
    K. Saito, K. Takatani, T. Sakka, Y.H. Ogata, Appl. Surf. Sci., 197–198, 56 (2002) CrossRefGoogle Scholar
  36. 36.
    K.K. Kim, M. Roy, H. Kwon, J.K. Song, S.M. Park, J. Appl. Phys. 117, 074302 (2015) ADSCrossRefGoogle Scholar
  37. 37.
    Y. Zhou, S. Tao, B. Wu, Appl. Phys. Lett. 99, 051106 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    S. Tao, Y. Zhou, B. Wu, Y. Gao, Appl. Surf. Sci. 258, 7766 (2012) ADSCrossRefGoogle Scholar
  39. 39.
    Bubble dynamics & shock waves, SHOCKWAVES, edited by C.F. Delale (Springer-Verlag, Berlin Heidelberg, 2013), Vol. 8 Google Scholar
  40. 40.
    G. Cristoforetti, M. Tibberi, A. Simonelli, P. Marsili, F. Giammanco, Appl. Opt. 51, B30 (2012) CrossRefGoogle Scholar
  41. 41.
    K. Sasaki, T. Nakano, W. Soliman, N. Takada, Appl. Phys. Express 2, 046501 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    B. Thornton, T. Sakka, T. Takahashi, A. Tamura, T. Masamura, A. Matsumoto, Appl. Phys. Express 6, 082401 (2013) ADSCrossRefGoogle Scholar
  43. 43.
    J.-P. Franc, J.-M. Michel, Fundamentals of cavitation (Kluwer Academic Publishers, 2004) Google Scholar
  44. 44.
    S. Dehaeck, J.P.A.J. van Beeck, Appl. Opt. 46, 5957 (2007) ADSCrossRefGoogle Scholar
  45. 45.
    C. Bongiovanni, A. Dominguez, J.-P. Chevaillier, Eur. J. Phys. 21, 561 (2000) CrossRefGoogle Scholar
  46. 46.
    V. Lazic, S. Jovicevic, M. Carpanese, Appl. Phys. Lett. 101, 054101 (2012) ADSCrossRefGoogle Scholar
  47. 47.
    A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorčič, N. Nishi, K.I. Amano, K. Fukami, T. Sakka, Appl. Phys. A 122, 234 (2016) ADSCrossRefGoogle Scholar
  48. 48.
    J. Chen, X. Li, Y. Gua, H. Wang, X. Song, H. Zeng, J. Colloid Interface Sci. 489, 38 (2017) ADSCrossRefGoogle Scholar
  49. 49.
    W.J. Lentz, A.A. Atchley, D.F. Gaitan, Appl. Opt. 34, 2648 (1995) ADSCrossRefGoogle Scholar
  50. 50.
    B.P. Barber, S.J. Putterman, Phys. Rev. Lett. 69, 3839 (1992) ADSCrossRefGoogle Scholar
  51. 51.
    A. De Giacomo, A. De Bonis, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, S. Orlando, A. Santagata, G.S. Senesi, F. Taccogna, R. Teghil, J. Phys. Chem. C 115, 5123 (2011) CrossRefGoogle Scholar
  52. 52.
    H. Suzuki, H. Nishikawa, I.-Y.S. Lee, Phys. Chem. Commun. 5, 88 (2002) Google Scholar
  53. 53.
    H. Ushida, N. Takada, K. Sasaki, J. Phys.: Conf. Ser. 59, 563 (2007) Google Scholar
  54. 54.
    P.W.J.M. Boumans, Theory of spectrochemical excitation (Springer US, 1995) Google Scholar
  55. 55.
    L.S. Ornstein, H. Brinkman, Communication from the Physical Institute of the University of Utrecht, 1931 Google Scholar
  56. 56.
    P. Sriramachandran, B. Viswanathan, R. Shanmugavel, Sol. Phys. 286, 315 (2013) ADSCrossRefGoogle Scholar
  57. 57.
    C. Parigger, A. Woods, D. Surmick, G. Gautam, M. Witte, J. Hornkohl, Spectrochim. Acta B 107, 132 (2015) ADSCrossRefGoogle Scholar
  58. 58.
    A. Casavola, A. De Giacomo, M. Dell’Aglio, F. Taccogna, G. Colonna, O. De Pascale, S. Longo, Spectrochim. Acta B 60, 975 (2005) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Physics, University of BelgradeBelgradeSerbia

Personalised recommendations