Multiple scattering of slow muons in an electron gas

  • Claudio Darío ArchubiEmail author
  • Nestor R. Arista
Regular Article


A comparative study of the angular dispersion of slow muons in an electron gas is performed using three dielectric models which represent the case of metals (Lindhard model for a free electron gas) and the cases of semiconductors and insulators (Levine and Louie model and Brandt and Reinheimer model for systems with a band gap) and a non-linear model for both cases at very low velocities. The contribution of collective electronic excitations according to the dielectric model are found to be negligible. The results from the calculation using Lindhard expressions for the angular half width are coincident with the result of a multiple scattering model. In particular, the effects produced by the band gap of the material are analyzed in detail. Finally, as the recoil effect is negligible, there is an almost exact scaling, for a given velocity, between the proton and the muon results.

Graphical abstract


Atomic and Molecular Collisions 


  1. 1.
    T.D. Lagerlund, M. Blecher, K. Gottow, R. Keller, W.C. Lam, Nucl. Instrum. Methods 120, 521 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    G. Flik et al., Phys. Rev. Lett. 57, 563 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    J.E. Valdés, P. Vargas, N.R. Arista, Nucl. Instrum. Methods Phys. Res. B 154, 9 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    N. Saquib, MUSCLE: A Simulation Toolkit Modeling Low Energy Muon Beam Transport in Crystals, Senior Projects Spring 2011, Paper 11, 2011Google Scholar
  5. 5.
    N. Saquib, W.J. Kossler, M. Deady, Phys. Proc. 30, 42 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Miyake et al., Phys. Proc. 30, 46 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    P. Bakule et al., Nucl. Instrum. Methods Phys. Res. B 266, 335 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    E. Morenzoni, Physics and applications of low energy muons, Muon Science: Muons in Physics, Chemistry and Materials, edited by S.L. Lee, S.H. Kilcoyne, R. Cywinski (Bristol and Philadelphia, 1999), Vol. 51, pp. 343–404Google Scholar
  9. 9.
    E. Morenzoni et al., Proceedings of the International Symposium on Science Explored by Ultra Slow Muon (USM), JPS Conf. Proc., Vol. 2, 2014, p. 0201Google Scholar
  10. 10.
    C.D. Archubi, N.R. Arista, Phys. Rev. A 72, 062712 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    C.D. Archubi, N.R. Arista, Phys. Rev. A 74, 052717 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    G. Maynard, C. Deutsch, EPJ Web Conf. 59, 05020 (2013)CrossRefGoogle Scholar
  13. 13.
    C.D. Archubi, N.R. Arista, Eur. Phys. J. B 89, 86 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    C.D. Archubi, N.R. Arista, Eur. Phys. J. B 90, 18 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    J. Lindhard, K. Dan. Vidensk. Selsk., Mat.-Fys. Medd. 28, 1 (1954)MathSciNetGoogle Scholar
  16. 16.
    J. Lindhard, A. Winther, K. Dan. Vidensk. Selsk., Mat.-Fys. Medd. 34, 1 (1964)Google Scholar
  17. 17.
    Z.H. Levine, S.G. Louie, Phys. Rev. B 25, 6310 (1982)ADSCrossRefGoogle Scholar
  18. 18.
    W. Brandt, J. Reinheimer, Phys. Rev. B 2, 3104 (1970)ADSCrossRefGoogle Scholar
  19. 19.
    W. Brandt, J. Reinheimer, Phys. Rev. B 4, 1395 (1971)ADSCrossRefGoogle Scholar
  20. 20.
    I. Nagy, A. Arnau, P.M. Echenique, Phys. Rev. A 40, 987 (1989)ADSCrossRefGoogle Scholar
  21. 21.
    L. de Ferrariis, N.R. Arista, Phys. Rev. A 29, 2145 (1984)ADSCrossRefGoogle Scholar
  22. 22.
    Y.I. Ohtsuki, Charged Beam Interactions with Solids (Taylor and Francis, 1983)Google Scholar
  23. 23.
    I. Bergstrom, K. Bjorkqvisbt, B. Domeij, G. Fladda, S. Andersen, Can. J. Phys. 46, 2679 (1968)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Instituto de Astronomía y Física del Espacio-UBA-Conicet, Ciudad UniversitariaBuenos AiresArgentina
  2. 2.División Colisiones Atómicas, Centro Atómico Bariloche and Instituto BalseiroS.C. BarilocheArgentina

Personalised recommendations