Quantum sensing of rotation velocity based on transverse field Ising model

  • Yu-Han Ma
  • Chang-Pu SunEmail author
Regular Article


We study a transverse-field Ising model (TFIM) in a rotational reference frame. We find that the effective Hamiltonian of the TFIM of this system depends on the system’s rotation velocity. Since the rotation contributes an additional transverse field, the dynamics of TFIM sensitively responses to the rotation velocity at the critical point of quantum phase transition. This observation means that the TFIM can be used for quantum sensing of rotation velocity that can sensitively detect rotation velocity of the total system at the critical point. It is found that the resolution of the quantum sensing scheme we proposed is characterized by the half-width of Loschmidt echo of the dynamics of TFIM when it couples to a quantum system S. And the resolution of this quantum sensing scheme is proportional to the coupling strength δ between the quantum system S and the TFIM, and to the square root of the number of spins N belonging the TFIM.

Graphical abstract


Quantum Information 


  1. 1.
    M.N. Armenise, C. Ciminelli, F. Dell’Olio et al., Advances in gyroscope technologies [M] (Springer Science & Business Media, Berlin Heidelberg, 2010) Google Scholar
  2. 2.
    B. Barrett, R. Geiger, I. Dutta et al., C. R. Phys. 15, 875 (2014) ADSCrossRefGoogle Scholar
  3. 3.
    T.G. Walker, M.S. Larsen, Adv. At. Mol. Opt. Phys. 65, 373 (2016) ADSCrossRefGoogle Scholar
  4. 4.
    T.W. Kornack, R.K. Ghosh, M.V. Romalis, Phys. Rev. Lett. 95, 230801 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    M. Larsen, M. Bulatowicz, in IEEE International, Frequency Control Symposium (FCS) (IEEE, 2012), p. 1 Google Scholar
  6. 6.
    R.M. Noor, V. Gundeti, A.M. Shkel, in IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (IEEE, 2017), p. 156 Google Scholar
  7. 7.
    H.T. Quan, Z. Song, X.F. Liu et al., Phys. Rev. Lett. 96, 140604 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    S. Sachdev, Quantum phase transitions [M] (John Wiley & Sons Ltd., Cambridge, England, 2007) Google Scholar
  9. 9.
    J. Zhang, X. Peng, N. Rajendran et al., Phys. Rev. Lett. 100, 100501 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    J. Zhang, F.M. Cucchietti, C.M. Chandrashekar et al., Phys. Rev. A 79, 012305 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    V. Jacques, P. Neumann, J. Beck et al., Phys. Rev. Lett. 102, 057403 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    A. Batalov, V. Jacques, F. Kaiser et al., Phys. Rev. Lett. 102, 195506 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    P. Pfeuty, Phys. Lett. A 72, 245 (1979) ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    W. Liang, V.S. Ilchenko, A.A. Savchenkov et al., Optica 4, 114 (2017) CrossRefGoogle Scholar
  15. 15.
    T. Müller, M. Gilowski, M. Zaiser et al., Eur. Phys. J. D 53, 273 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Beijing Computational Science Research CenterBeijingP.R. China
  2. 2.Graduate School of Chinese Academy of Engineering PhysicsBeijingP.R. China

Personalised recommendations