Advertisement

Hamiltonian closures in fluid models for plasmas

  • Emanuele Tassi
Topical Review

Abstract

This article reviews recent activity on the Hamiltonian formulation of fluid models for plasmas in the non-dissipative limit, with emphasis on the relations between the fluid closures adopted for the different models and the Hamiltonian structures. The review focuses on results obtained during the last decade, but a few classical results are also described, in order to illustrate connections with the most recent developments. With the hope of making the review accessible not only to specialists in the field, an introduction to the mathematical tools applied in the Hamiltonian formalism for continuum models is provided. Subsequently, we review the Hamiltonian formulation of models based on the magnetohydrodynamics description, including those based on the adiabatic and double adiabatic closure. It is shown how Dirac’s theory of constrained Hamiltonian systems can be applied to impose the incompressibility closure on a magnetohydrodynamic model and how an extended version of barotropic magnetohydrodynamics, accounting for two-fluid effects, is amenable to a Hamiltonian formulation. Hamiltonian reduced fluid models, valid in the presence of a strong magnetic field, are also reviewed. In particular, reduced magnetohydrodynamics and models assuming cold ions and different closures for the electron fluid are discussed. Hamiltonian models relaxing the cold-ion assumption are then introduced. These include models where finite Larmor radius effects are added by means of the gyromap technique, and gyrofluid models. Numerical simulations of Hamiltonian reduced fluid models investigating the phenomenon of magnetic reconnection are illustrated. The last part of the review concerns recent results based on the derivation of closures preserving a Hamiltonian structure, based on the Hamiltonian structure of parent kinetic models. Identification of such closures for fluid models derived from kinetic systems based on the Vlasov and drift-kinetic equations are presented, and connections with previously discussed fluid models are pointed out.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    S. Chapman, T.G. Cowling, The mathematical theory of non-uniform gases (Cambridge University Press, 1952) Google Scholar
  2. 2.
    H. Grad, Commun. Pure Appl. Math. 2, 311 (1949) MathSciNetGoogle Scholar
  3. 3.
    S.I. Braginskii, Zh. Eksp. Teor. Fiz. 33, 459 (1957) Google Scholar
  4. 4.
    S.I. Braginskii, Transport processes in a plasma (Consultants Bureau, New York, 1965) Google Scholar
  5. 5.
    R. Balescu, Transport processes in plasmas, in Classical transport (North-Holland, 1988), Vol. 1 Google Scholar
  6. 6.
    R.D. Hazeltine, M. Kotschenreuther, P.J. Morrison, Phys. Fluids 28, 2466 (1985) ADSCrossRefGoogle Scholar
  7. 7.
    G.W. Hammett, F.W. Perkins, Phys. Rev. Lett. 64, 3019 (1990) ADSCrossRefGoogle Scholar
  8. 8.
    P.B. Snyder, G.W. Hammett, Phys. Plasmas 4, 3974 (1997) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    T. Passot, P.L. Sulem, Phys. Plasmas 11, 5173 (2004) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Goswami, T. Passot, P.L. Sulem, Phys. Plasmas 12, 2109 (2005) CrossRefGoogle Scholar
  11. 11.
    P.L. Sulem, T. Passot, J. Plasma Phys. 325810103 (2015) Google Scholar
  12. 12.
    N. Mattor, S.E. Parker, Phys. Rev. Lett. 79, 3419 (1997) ADSCrossRefGoogle Scholar
  13. 13.
    N. Mattor, Phys. Plasmas 5, 1822 (1998) ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Sugama, T.H. Watanabe, W. Horton, Phys. Plasmas 8, 2617 (2001) ADSCrossRefGoogle Scholar
  15. 15.
    A.J. Brizard, T.S. Hahm, Rev. Mod. Phys. 79, 421 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    A. Brizard, Phys. Fluids B 4, 1213 (1992) ADSCrossRefGoogle Scholar
  17. 17.
    G.W. Hammett, W. Dorland, F.W. Perkins, Phys. Fluids B 4, 2052 (1992) ADSCrossRefGoogle Scholar
  18. 18.
    G.W. Hammett, M.A. Beer, W. Dorland, S.C. Cowley, S.A. Smith, Plasma Phys. Control. Fusion 35, 973 (1993) ADSCrossRefGoogle Scholar
  19. 19.
    W. Dorland, G.W. Hammett, Phys. Fluids B 5, 812 (1993) ADSCrossRefGoogle Scholar
  20. 20.
    M.A. Beer, G.W. Hammett, Phys. Plasmas 3, 4046 (1996) ADSCrossRefGoogle Scholar
  21. 21.
    P.B. Snyder, G.W. Hammett, Phys. Plasmas 8, 3199 (2001) ADSCrossRefGoogle Scholar
  22. 22.
    B. Scott, Phys. Plasmas 7, 1845 (2000) ADSCrossRefGoogle Scholar
  23. 23.
    D. Strintzi, B. Scott, A. Brizard, Phys. Plasmas 12, 052517 (2005) ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    B. Scott, Phys. Plasmas 17, 102306 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    J. Madsen, Phys. Plasmas 20, 072301 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    H.R. Strauss, Phys. Fluids 19, 134 (1976) ADSCrossRefGoogle Scholar
  27. 27.
    R.D. Hazeltine, J.D. Meiss, Plasma confinement (Dover Publications, 2003) Google Scholar
  28. 28.
    A. Hasegawa, K. Mima, Phys. Fluids 21, 87 (1978) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    A. Hasegawa, M. Wakatani, Phys. Rev. Lett. 50, 682 (1983) ADSCrossRefGoogle Scholar
  30. 30.
    T.J. Schep, F. Pegoraro, B.N. Kuvshinov, Phys. Plasmas 1, 2843 (1994) ADSCrossRefGoogle Scholar
  31. 31.
    R. Fitzpatrick, F. Porcelli, Phys. Plasmas 11, 4713 (2004). Erratum: 14, 049902 2007 ADSCrossRefGoogle Scholar
  32. 32.
    E. Tassi, Theor. Math. Phys. 188, 1377 (2016) CrossRefGoogle Scholar
  33. 33.
    I. Keramidas Charidakos, F.L. Waelbroeck, P.J. Morrison, Phys. Plasmas 22, 112113 (2015) ADSCrossRefGoogle Scholar
  34. 34.
    F.L. Waelbroeck, R.D. Hazeltine, P.J. Morrison, Phys. Plasmas 16, 032109 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    D. Grasso, E. Tassi, J. Plasma Phys. 81, 495810501 (2015) CrossRefGoogle Scholar
  36. 36.
    G.F. Chew, M.L. Goldberger, F.E. Low, Proc. R. Soc. A236, 112 (1956) ADSCrossRefGoogle Scholar
  37. 37.
    P.J. Morrison, Phys. Plasmas 12, 058102 (2005) ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    P.J. Morrison, Rev. Mod. Phys. 70, 467 (1998) ADSCrossRefGoogle Scholar
  39. 39.
    J.E. Marsden, T.S. Ratiu, Introduction to mechanics and symmetry (Springer-Verlag, Berlin, 2002) Google Scholar
  40. 40.
    C. Tronci, E. Tassi, E. Camporeale, P. Morrison, Plasma Phys. Control. Fusion 56, 095008 (2014) ADSCrossRefGoogle Scholar
  41. 41.
    D.D. Holm, J.E. Marsden, T.S. Ratiu, A. Weinstein, Phys. Rep. 123, 2 (1985) ADSCrossRefGoogle Scholar
  42. 42.
    T. Andreussi, P.J. Morrison, F. Pegoraro, Phys. Plasmas 23, 102112 (2016) ADSCrossRefGoogle Scholar
  43. 43.
    T. Andreussi, P.J. Morrison, F. Pegoraro, Phys. Plasmas 20, 092104 (2013) ADSCrossRefGoogle Scholar
  44. 44.
    T. Andreussi, P.J. Morrison, F. Pegoraro, Phys. Plasmas 19, 052102 (2012) ADSCrossRefGoogle Scholar
  45. 45.
    T. Andreussi, P.J. Morrison, F. Pegoraro, Plasma Phys. Control. Fusion 52, 055001 (2010) ADSCrossRefGoogle Scholar
  46. 46.
    F. Bouchet, A. Venaille, Phys. Rep. 515, 227 (2012) ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    H.M. Abdelhamid, Z. Yoshida, Phys. Plasmas 23, 022105 (2016) ADSCrossRefGoogle Scholar
  48. 48.
    H.M. Abdelhamid, M. Lingam, S.M. Mahajan, Astrophys. J. 829, 87 (2016) ADSCrossRefGoogle Scholar
  49. 49.
    P.J. Morrison, J.M. Greene, Phys. Rev. Lett. 45, 790 (1980) ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    R. Salmon, Ann. Rev. Fluid Mech. 20, 225 (1988) ADSCrossRefGoogle Scholar
  51. 51.
    J.E. Marsden, T. Ratiu, A. Weinstein, Trans. Am. Math. Soc. 281, 147 (1984) CrossRefGoogle Scholar
  52. 52.
    J.E. Marsden, A. Weinstein, T. Ratiu, T.S. Schmid, R.G. Spencer, Atti Acad. Sci. Torino Cl. Sci. Fis. Math. Nat. 117, 289 (1983) Google Scholar
  53. 53.
    D.D. Holm, T. Schmah, C. Stoica, Geometric mechanics and symmetry: from finite to infinite dimensions (Oxford University Press, 2009) Google Scholar
  54. 54.
    E.C. D’Avignon, P.J. Morrison, M. Lingam, Phys. Plasmas 23, 062101 (2016) CrossRefGoogle Scholar
  55. 55.
    M. Lingam, P.J. Morrison, E. Tassi, Phys. Lett. A 379, 570 (2015) CrossRefGoogle Scholar
  56. 56.
    P.J. Morrison, Mathematical methods in hydrodynamics and integrability in dynamical systems, in American Institute of Physics Conference Proceedings, edited by M. Tabor, Y. Treve (American Institute of Physics, 1982), Vol. 88, pp. 13–45 Google Scholar
  57. 57.
    J.E. Marsden, T. Ratiu, A. Weinstein, Fluids and plasmas: geometry and dynamics, in Contemporary mathematics, edited by J.E. Marsden (American Mathematical Society, 1984), Vol. 28, pp. 55–100 Google Scholar
  58. 58.
    P.J. Morrison, M. Lingam, R. Acevedo, Phys. Plasmas 21, 082102 (2014) ADSCrossRefGoogle Scholar
  59. 59.
    M. Lingam, P.J. Morrison, Phys. Lett. A 3526, 570 (2014) Google Scholar
  60. 60.
    I. Keramidas Charidakos, M. Lingam, P.J. Morrison, R.L. White, A. Wurm, Phys. Plasmas 21, 092118 (2014) ADSCrossRefGoogle Scholar
  61. 61.
    Y. Kawazura, G. Miloshevich, P.J. Morrison, Phys. Plasmas 24, 022103 (2017) ADSCrossRefGoogle Scholar
  62. 62.
    P.J. Morrison, R.D. Hazeltine, Phys. Fluids 27, 886 (1984) ADSCrossRefGoogle Scholar
  63. 63.
    F. Sahraoui, G. Belmont, L. Rezeau, Phys. Plasmas 10, 1325 (2003) ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    Z. Yoshida, E. Hameiri, J. Phys. A: Math. Theor. 46, 335502 (2013) CrossRefGoogle Scholar
  65. 65.
    N. Padhye, P.J. Morrison, Phys. Lett. A 219, 287 (1996) ADSCrossRefGoogle Scholar
  66. 66.
    N. Padhye, P.J. Morrison, Plasma Phys. Rep. 22, 960 (1996) Google Scholar
  67. 67.
    R.G. Spencer, A.N. Kaufman, Phys. Rev. A 25, 2437 (1982) ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    D.D. Holm, B.A. Kupershmidt, Physica D 7, 330 (1983) ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    D. Biskamp, Magnetic reconnection in plasmas (Cambridge University Press, 2000) Google Scholar
  70. 70.
    C. Chandre, P.J. Morrison, E. Tassi, Phys. Lett. A 376, 737 (2012) ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    P.A.M.Dirac, Can. J. Math. 2, 129 (1950) CrossRefGoogle Scholar
  72. 72.
    A. Hanson, T. Regge, C. Teitelboim, Constrained Hamiltonian systems (Accademia Nazionale dei Lincei, Roma, 1976) Google Scholar
  73. 73.
    E.C.G. Sudarshan, N. Mukunda, Classical dynamics: a modern perspective (Wiley, New York, 1974) Google Scholar
  74. 74.
    K. Sundermeyer, Constrained dynamics (Springer-Verlag, Berlin, 1982) Google Scholar
  75. 75.
    C. Chandre, E. Tassi, P.J. Morrison, Phys. Plasmas 17, 042307 (2010) ADSCrossRefGoogle Scholar
  76. 76.
    C. Chandre, L. de Guillebon, A. Back, E. Tassi, P.J. Morrison, J. Phys. A: Math. Theor. 46, 125203 (2013) ADSCrossRefGoogle Scholar
  77. 77.
    D.D. Holm, B.A. Kupershmidt, Phys. Fluids 29, 3889 (1986) ADSCrossRefGoogle Scholar
  78. 78.
    R. Lüst Fortschr. Phys. 7, 503 (1959) CrossRefGoogle Scholar
  79. 79.
    K. Kimura, P.J. Morrison, Phys. Plasmas 21, 082101 (2014) ADSCrossRefGoogle Scholar
  80. 80.
    H.M. Abdelhamid, Y. Kawazura, Z. Yoshida, J. Phys. A: Math. Theor. 48, 235502 (2015) ADSCrossRefGoogle Scholar
  81. 81.
    D.D. Holm, Phys. Fluids 30, 1310 (1987) ADSCrossRefGoogle Scholar
  82. 82.
    Y. Kawazura, E. Hameiri, Phys. Plasmas 19, 082513 (2012) ADSCrossRefGoogle Scholar
  83. 83.
    M. Lingam, G. Miloshevich, P.J. Morrison, Phys. Lett. A 380, 2400 (2016) ADSMathSciNetCrossRefGoogle Scholar
  84. 84.
    D. Grasso, E. Tassi, H.M. Abdelhamid, P.J. Morrison, Phys. Plasmas 24, 012110 (2017) ADSCrossRefGoogle Scholar
  85. 85.
    D.A. Kaltsas, G.N. Throumoulopoulos, P.J. Morrison, Phys. Plasmas 24, 092504 (2017) ADSCrossRefGoogle Scholar
  86. 86.
    J. Shiraishi, S. Ohsaki, Z. Yoshida, Phys. Plasmas 12, 092308 (2005) ADSMathSciNetCrossRefGoogle Scholar
  87. 87.
    M. Lingam, P.J. Morrison, G. Miloshevich, Phys. Plasmas 22, 072111 (2015) ADSCrossRefGoogle Scholar
  88. 88.
    J.L. Thiffeault, P.J. Morrison, Physica D 136, 205 (2000) ADSMathSciNetCrossRefGoogle Scholar
  89. 89.
    E. Tassi, P.J. Morrison, D. Grasso, F. Pegoraro, Nucl. Fusion 50, 034007 (2010) ADSCrossRefGoogle Scholar
  90. 90.
    B.D. Scott, Phys. Plasmas 14, 102318 (2007) ADSCrossRefGoogle Scholar
  91. 91.
    E. Cafaro, D. Grasso, F. Pegoraro, F. Porcelli, A. Saluzzi, Phys. Rev. Lett. 80, 4430 (1998) ADSCrossRefGoogle Scholar
  92. 92.
    D. Grasso, F. Califano, F. Pegoraro, F. Porcelli, Phys. Rev. Lett. 86, 5051 (2001) ADSCrossRefGoogle Scholar
  93. 93.
    D. Grasso, D. Borgogno, F. Pegoraro, Phys. Plasmas 14, 055703 (2007) ADSCrossRefGoogle Scholar
  94. 94.
    M. Ottaviani, F. Porcelli, Phys. Rev. Lett. 71, 3802 (1993) ADSCrossRefGoogle Scholar
  95. 95.
    D. Del Sarto, F. Califano, F. Pegoraro, Mod. Phys. Lett. B 20, 931 (2006) ADSCrossRefGoogle Scholar
  96. 96.
    D. Del Sarto, C. Marchetto, F. Pegoraro, F. Califano, Plasma Phys. Control. Fusion 53, 035008 (2011) ADSCrossRefGoogle Scholar
  97. 97.
    D. Grasso, E. Tassi, F.L. Waelbroeck, Phys. Plasmas 17, 082312 (2010) ADSCrossRefGoogle Scholar
  98. 98.
    L. Comisso, D. Grasso, E. Tassi, F.L. Waelbroeck, Phys. Plasmas 19, 042103 (2012) ADSCrossRefGoogle Scholar
  99. 99.
    E. Tassi, P.J. Morrison, F.L. Waelbroeck, D. Grasso, Plasma Phys. Control. Fusion 50, 085014 (2008) ADSCrossRefGoogle Scholar
  100. 100.
    D. Del Sarto, F. Califano, F. Pegoraro, Phys. Rev. Lett. 91, 235001 (2003) ADSCrossRefGoogle Scholar
  101. 101.
    R.D. Hazeltine, C.T. Hsu, P.J. Morrison, Phys. Fluids 30, 3204 (1987) ADSCrossRefGoogle Scholar
  102. 102.
    R. Fitzpatrick, Phys. Plasmas 17, 042101 (2010) ADSCrossRefGoogle Scholar
  103. 103.
    P.J. Morrison, E. Tassi, N. Tronko, Phys. Plasmas 20, 042109 (2013) ADSCrossRefGoogle Scholar
  104. 104.
    P. Morrison, I. Caldas, H. Tasso, Z. Nat. 39a, 1023 (1984) Google Scholar
  105. 105.
    O. Izacard, C. Chandre, E. Tassi, G. Ciraolo, Phys. Plasmas 18, 062105 (2011) ADSCrossRefGoogle Scholar
  106. 106.
    F.L. Waelbroeck, P.J. Morrison, W. Horton, Plasma Phys. Control. Fusion 46, 1331 (2004) CrossRefGoogle Scholar
  107. 107.
    D. Dagnelund, V.P. Pavlenko, Phys. Scripta 71, 293 (2005) ADSCrossRefGoogle Scholar
  108. 108.
    A.J. Wootton, B.A. Carreras, H. Matsumoto, K. McGuire, W.A. Peebles, C.P. Ritz, P.W. Terry, S.J. Zweben, Phys. Fluids B 2, 2879 (1990) ADSCrossRefGoogle Scholar
  109. 109.
    G.G. Howes, Kinetic turbulence (Springer, Berlin, Heidelberg, 2015) Google Scholar
  110. 110.
    D. Grasso, F. Califano, F. Pegoraro, F. Porcelli, PlasmaPhys. Rep. 26, 512 (2000) ADSCrossRefGoogle Scholar
  111. 111.
    F.L. Waelbroeck, E. Tassi, Commun. Nonlinear Sci. Numer.Simul. 17, 2171 (2012) ADSMathSciNetCrossRefGoogle Scholar
  112. 112.
    H. de Blank, Phys. Plasmas 8, 3927 (2001) ADSCrossRefGoogle Scholar
  113. 113.
    A. Zocco, A. Schekochihin, Phys. Plasmas 18, 102309 (2011) ADSCrossRefGoogle Scholar
  114. 114.
    P.J. Morrison, Phys. Lett. A 80A, 383 (1980) ADSCrossRefGoogle Scholar
  115. 115.
    J.E. Marsden, A. Weinstein, Physica D 4, 394 (1982) ADSCrossRefGoogle Scholar
  116. 116.
    M. Perin, C. Chandre, P.J. Morrison, E. Tassi, Ann. Phys. 348, 50 (2014). Corrigendum: 370, 139 (2016) ADSCrossRefGoogle Scholar
  117. 117.
    B. Kupershmidt, J. Manin, Funktsional Anal. i Prilozhen 12, 25 (1978) MathSciNetCrossRefGoogle Scholar
  118. 118.
    J. Gibbons, Physica D 3, 503 (1981) ADSMathSciNetCrossRefGoogle Scholar
  119. 119.
    J. Gibbons, D.D. Holm, C. Tronci, Phys. Lett. A 372, 4184 (2008) ADSMathSciNetCrossRefGoogle Scholar
  120. 120.
    L. de Guillebon, C. Chandre, Phys. Lett. A 376, 3172 (2012) ADSCrossRefGoogle Scholar
  121. 121.
    M. Perin, C. Chandre, P.J. Morrison, E. Tassi, J. Phys. A: Math. Theor. 48, 275501 (2015). Corrigendum: 49, 269501 (2016) ADSCrossRefGoogle Scholar
  122. 122.
    J.C. Gibbings, Dimensional analysis (Springer, 2011) Google Scholar
  123. 123.
    Y. Cheng, J.A. Rossmanith, J. Comput. Appl. Math. 262, 384 (2014) MathSciNetCrossRefGoogle Scholar
  124. 124.
    C. Yuan, R.O. Fox, J. Comput. Phys. 230, 8216 (2011) ADSMathSciNetCrossRefGoogle Scholar
  125. 125.
    R.O. Fox, J. Comput. Phys. 228, 7771 (2009) ADSMathSciNetCrossRefGoogle Scholar
  126. 126.
    E. Chalons, D. Kah, M. Massot, Commun. Math. Sci. 10, 1241 (2012) MathSciNetCrossRefGoogle Scholar
  127. 127.
    M. Perin, C. Chandre, P.J. Morrison, E. Tassi, Phys. Plasmas 22, 092309 (2015) ADSCrossRefGoogle Scholar
  128. 128.
    K.V. Roberts, H.L. Berk, Phys. Rev. Lett. 19, 297 (1967) ADSCrossRefGoogle Scholar
  129. 129.
    P. Bertrand, M.R. Feix, Phys. Lett. A 28, 1968 (1968) CrossRefGoogle Scholar
  130. 130.
    H.L. Berk, C.E. Nielsen, K.V. Roberts, Phys. Fluids 13, 980 (1970) ADSCrossRefGoogle Scholar
  131. 131.
    P. Morel, E. Gravier, N. Besse, R. Klein, A. Ghizzo, P. Bertrand, Phys. Plasmas 14, 112109 (2007) ADSCrossRefGoogle Scholar
  132. 132.
    P. Morel, E. Gravier, N. Besse, A. Ghizzo, P. Bertrand, Commun. Nonlinear Sci. Numer. Simul. 13, 11 (2008) ADSMathSciNetCrossRefGoogle Scholar
  133. 133.
    E. Gravier, R. Klein, P. Morel, N. Besse, P. Bertrand, Phys. Plasmas 15, 122103 (2008) ADSCrossRefGoogle Scholar
  134. 134.
    E. Gravier, E. Plaut, Phys. Plasmas 20, 042105 (2013) ADSCrossRefGoogle Scholar
  135. 135.
    A.A. Chesnokov, M.V. Pavlov, Acta Appl. Math. 122, 367 (2012) MathSciNetGoogle Scholar
  136. 136.
    P.J. Morrison, G.I. Hagstrom, Continuum Hamiltonian Hopf bifurcation I (Wiley, New York, 2014) Google Scholar
  137. 137.
    G.I. Hagstrom, P.J. Morrison, Continuum Hamiltonian Hopf bifurcation II (Wiley, New York, 2014) Google Scholar
  138. 138.
    V.E. Zakharov, Funct. Anal. Appl. 14, 89 (1980) CrossRefGoogle Scholar
  139. 139.
    V.E. Zakharov, Physica D 3, 193 (1981) ADSCrossRefGoogle Scholar
  140. 140.
    E. Tassi, J. Phys. A: Math. Theor. 47, 195501 (2014) ADSMathSciNetCrossRefGoogle Scholar
  141. 141.
    M. Perin, C. Chandre, E. Tassi, J. Phys. A: Math. Theor. 49, 305501 (2016) CrossRefGoogle Scholar
  142. 142.
    E. Tassi, Eur. Phys. J. D 68, 196 (2014) ADSCrossRefGoogle Scholar
  143. 143.
    A.D. Polyanin, V.F. Zaitsev, Handbook of exact solutions for ordinary differential equations (Chapman and Hall/CRC Press, 2003) Google Scholar
  144. 144.
    Y. Sarazin, G. Dif-Pradalier, D. Zarzoso, X. Garbet, P. Ghendrih, V. Grandgirard, Plasma Phys. Control. Fusion 51, 115003 (2009) ADSCrossRefGoogle Scholar
  145. 145.
    E. Tassi, Ann. Phys. 362, 239 (2015) ADSMathSciNetCrossRefGoogle Scholar
  146. 146.
    G. Miloshevich, M. Lingam, P.J. Morrison, New J. Phys. 19, 015007 (2017) ADSCrossRefGoogle Scholar
  147. 147.
    E. Tassi, P.L. Sulem, T. Passot, J. Plasma Phys. 82, 705820601 (2016) CrossRefGoogle Scholar
  148. 148.
    K.H. Kiyani, S.C. Chapman, F. Sahraoui, B. Hnat, O. Fauvarque, Y.V. Khotyaintsev, Astrophys. J. 663, 10 (2013) ADSCrossRefGoogle Scholar
  149. 149.
    G. Manfredi, Fields Inst. Commun. 46, 263 (2005) Google Scholar
  150. 150.
    M. Bonitz, AIP Conf. Proc. 1421, 135 (2012) ADSCrossRefGoogle Scholar
  151. 151.
    S.A. Khan, M. Bonitz, Quantum hydrodynamics (Springer, Berlin, Heidelberg, 2014) Google Scholar
  152. 152.
    M. Lingam, Commun. Nonlinear Sci. Numer. Simul. 28, 022105 (2015) CrossRefGoogle Scholar
  153. 153.
    P.J. Morrison, Phys. Plasmas  24, 055502 (2017). Available at https://arxiv.org/pdf/1612.06734.pdf ADSCrossRefGoogle Scholar
  154. 154.
    O. Ohia, J. Egedal, V.S. Lukin, W. Daughton, A. Le, Phys. Rev. Lett. 109, 115004 (2012) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Aix Marseille Univ, Univ Toulon, CNRS, CPTMarseilleFrance

Personalised recommendations