Advertisement

Thermally stable multipartite entanglements in the frustrated Heisenberg hexagon

  • Moumita Deb
  • Asim Kumar GhoshEmail author
Regular Article

Abstract

Thermally stable quantum states with multipartite entanglements led by frustration are found in the antiferromagnetic spin-1/2 Heisenberg hexagon. The model has been solved exactly to obtain all analytic expressions of eigenvalues and eigenfunctions. Detection and characterizations for various types of entanglements have been carried out in terms of concurrence and entanglement witnesses based on several thermodynamic observables. Variations of entanglement properties with respect to temperature and frustration are discussed. Even though the frustration opposes the bipartite entanglement, it favors the multipartite entanglement. Entangled states exhibit robustness against the thermal effects in the presence of frustration and they are found to survive at any temperature.

Graphical abstract

Keywords

Quantum Optics 

References

  1. 1.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    O. Güuhne, G. Toth, Phys. Rep. 474, 1 (2009)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    C.H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    G.M. Nikolopoulos, I. Jex, Quantum State Transfer, Network Engineering (Springer, Heidelberg, 2014)Google Scholar
  8. 8.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 1999)Google Scholar
  9. 9.
    L.-A. Wu, M.S. Sarandy, D.A. Lidar, Phys. Rev. Lett. 93, 250404 (2004)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Somma, G. Ortiz, H. Barnum, E. Knill, L. Viola, Phys. Rev. A 70, 042311 (2004)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    J. Vidal, R. Mosseri, J. Dukelsky, Phys. Rev. A 69, 054101 (2004)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    D. Procissi et al., Phys. Rev. B 69, 094436 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    I. Bose, A. Trivedi, Phys. Rev. A 72, 022314 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    S. Ghosh, T.F. Rosenbaum, G. Aeppli, S.N. Coppersmith, Nature (London) 425, 48 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    M.R. Dowling, A.C. Doherty, S.D. Bartlett, Phys. Rev. A 70, 062113 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    M. Wieśniak. V. Vedral, Č. Brunkner, New J. Phys. 7, 258 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    P. Krammer et al., Phys. Rev. Lett. 103, 100502 (2009)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    C. Brukner, V. Vedral, A. Zeilinger, Phys. Rev. A 73, 012110 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    B.-Q. Jin, V.E. Korepin, J. Stat. Phys. 116, 79 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    J.P. Keating, F. Mezzadri, Phys. Rev. Lett. 94, 050501 (2005)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    B. Damski, M.M. Rams, J. Phys. A: Math. Theor. 47, 025303 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    T.J. Osborne, M.A. Nielsen, Phys. Rev. A 66, 032110 (2002)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    K.M.O. Connor, W.K. Wootters, Phys. Rev. A 63, 052302 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    D. Bruss, N. Dutta, A. Ekert, L.C. Kwek, C. Macchiavello, Phys. Rev. A 72, 014301 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    U. Glaser, H. Büttner, H. Fehske, Phys. Rev. A 68, 032318 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature (London) 416, 608 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    A.M. Souza et al., Phys. Rev. B 79, 054408 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    A. Sen(De) et al., Phys. Rev. Lett. 101, 187202 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    B.M. Terhal, Phys. Lett. A 271, 319 (2000)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    X. Wang, Phys. Rev. A 66, 044305 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    C.A. Sackett et al., Nature (London) 404, 256 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    C.H. Bennett et al., Phys. Rev. Lett. 76, 722 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    J.A. Nelder, R. Mead, Comput. J. 7, 308 (1965)MathSciNetCrossRefGoogle Scholar
  37. 37.
    M. Hase et al., J. Phys. Soc. Jpn 65, 372 (1996)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PhysicsJadavpur UniversityKolkataIndia

Personalised recommendations