Advertisement

Impact of buffer gas quenching on the 1S0 → 1P1 ground-state atomic transition in nobelium

  • Premaditya Chhetri
  • Dieter Ackermann
  • Hartmut Backe
  • Michael Block
  • Bradley Cheal
  • Christoph Emanuel Düllmann
  • Julia Even
  • Rafael Ferrer
  • Francesca Giacoppo
  • Stefan Götz
  • Fritz Peter Heßberger
  • Oliver Kaleja
  • Jadambaa Khuyagbaatar
  • Peter Kunz
  • Mustapha Laatiaoui
  • Felix Lautenschläger
  • Werner Lauth
  • Enrique Minaya Ramirez
  • Andrew Kishor Mistry
  • Sebastian Raeder
  • Calvin Wraith
  • Thomas Walther
  • Alexander Yakushev
Regular Article

Abstract

Using the sensitive Radiation Detected Resonance Ionization Spectroscopy (RADRIS) technique an optical transition in neutral nobelium (No, Z = 102) was identified. A remnant signal when delaying the ionizing laser indicated the influence of a strong buffer gas induced de-excitation of the optically populated level. A subsequent investigation of the chemical homologue, ytterbium (Yb, Z = 70), enabled a detailed study of the atomic levels involved in this process, leading to the development of a rate equation model. This paves the way for characterizing resonance ionization spectroscopy (RIS) schemes used in the study of nobelium and beyond, where atomic properties are currently unknown.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    H. Backe et al., Nucl. Phys. A 944, 492 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    M. Sewtz et al., Phys. Rev. Lett. 90, 163002 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    M. Laatiaoui et al., Nature 538, 495 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    H. Backe et al., Hyperfine Interact. 78, 35 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    H. Backe et al., Eur. Phys. J. D 45, 99 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    M. Laatiaoui et al., Eur. Phys. J. D 68, 71 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    F. Lautenschläger et al., Nucl. Instrum. Methods B 383, 115 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    A. Borschevsky et al., Phys. Rev. A 75, 042514 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Liu et al., Phys. Rev. A 76, 062503 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    P. Indelicato et al., Eur. Phys. J. D 45, 155 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    I. Pohjalainen et al., Nucl. Instrum. Methods B 376, 233 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    A. Kramida, Yu. Ralchenko, J. Reader, NIST ASD Team (2015), NIST Atomic Spectra Database (ver. 5.3). Available: http://physics.nist.gov/asd (May 31, 2016)
  13. 13.
    W. Meggers, J. Tech, J. Res. Natl. Bureau Stand. 83, 13 (1978)CrossRefGoogle Scholar
  14. 14.
    K.B. Blagoev et al., At. Data Nucl. Data Tables 56, 33 (1994)CrossRefGoogle Scholar
  15. 15.
    C.J. Bowers et al., Phys. Rev. A 5, 533103 (1996)ADSGoogle Scholar
  16. 16.
    S.G. Porsev et al., Phys. Rev. A 4, 602781 (1999)ADSGoogle Scholar
  17. 17.
    M. Aymar et al., J. Phys. B 13, 1089 (1980)ADSCrossRefGoogle Scholar
  18. 18.
    M. Laatiaoui et al., Hyperfine Interact. 227, 69 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    J. Brust, A.C. Gallagher, Phys. Rev. A 52, 2120 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    W.H. Pence, S.R. Leone, J. Chem. Phys. 74, 5707 (1981)ADSCrossRefGoogle Scholar
  21. 21.
    L. Krause, Phys. El. Atomic Coll., VIII ICPEAC (North Holland, Amsterdam, 1972), p. 65Google Scholar
  22. 22.
    P. Camus et al., J. Phys. B: At. Mol. Phys. 13, 1073 (1980)ADSCrossRefGoogle Scholar
  23. 23.
    R. Loudon, The Quantum Theory of Light (OUP, Oxford, 2000)Google Scholar
  24. 24.
    F. James, MINUIT Function Minimization and Error Analysis, Reference Manual Version 94.1, CERN Program Library Long Writeup D506Google Scholar
  25. 25.
    A. Corney, Atomic and laser spectroscopy (Clarendon Press, Oxford, 1978)Google Scholar
  26. 26.
    M. Sewtz, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, 2003Google Scholar
  27. 27.
    M. Leino et al., Eur. Phys. J. A 6, 63 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    G. Münzenberg et al., Nucl. Instrum. Methods 161, 65 (1979)ADSCrossRefGoogle Scholar
  29. 29.
    V.A. Dzuba et al., Phys. Rev. A 90, 012504 (2014)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Premaditya Chhetri
    • 1
    • 2
  • Dieter Ackermann
    • 3
  • Hartmut Backe
    • 4
  • Michael Block
    • 2
    • 4
    • 5
  • Bradley Cheal
    • 6
  • Christoph Emanuel Düllmann
    • 2
    • 4
    • 5
  • Julia Even
    • 5
    • 7
  • Rafael Ferrer
    • 8
  • Francesca Giacoppo
    • 2
    • 5
  • Stefan Götz
    • 2
    • 4
    • 5
  • Fritz Peter Heßberger
    • 2
    • 5
  • Oliver Kaleja
    • 2
    • 4
  • Jadambaa Khuyagbaatar
    • 2
    • 5
  • Peter Kunz
    • 9
  • Mustapha Laatiaoui
    • 2
    • 5
    • 8
  • Felix Lautenschläger
    • 1
    • 2
  • Werner Lauth
    • 4
  • Enrique Minaya Ramirez
    • 10
  • Andrew Kishor Mistry
    • 2
    • 5
  • Sebastian Raeder
    • 2
    • 5
  • Calvin Wraith
    • 6
  • Thomas Walther
    • 1
  • Alexander Yakushev
    • 2
    • 5
  1. 1.Technische Universität DarmstadtDarmstadtGermany
  2. 2.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  3. 3.Grand Accélérateur National d’Ions Lourds, BP Caen Cedex 05France
  4. 4.Johannes Gutenberg-UniversitätMainzGermany
  5. 5.Helmholtz-Institut MainzMainzGermany
  6. 6.University of LiverpoolZE LiverpoolUK
  7. 7.KVI-Center for Advanced Radiation TechnologyGroningenThe Netherlands
  8. 8.KU LeuvenLeuvenBelgium
  9. 9.TRIUMF, VancouverBCCanada
  10. 10.Institut de Physique Nucléaire OrsayOrsayFrance

Personalised recommendations