Relativistic Vlasov-Maxwell modelling using finite volumes and adaptive mesh refinement

Abstract

The dynamics of collisionless plasmas can be modelled by the Vlasov-Maxwell system of equations. An Eulerian approach is needed to accurately describe processes that are governed by high energy tails in the distribution function, but is of limited efficiency for high dimensional problems. The use of an adaptive mesh can reduce the scaling of the computational cost with the dimension of the problem. Here, we present a relativistic Eulerian Vlasov-Maxwell solver with block-structured adaptive mesh refinement in one spatial and one momentum dimension. The discretization of the Vlasov equation is based on a high-order finite volume method. A flux corrected transport algorithm is applied to limit spurious oscillations and ensure the physical character of the distribution function. We demonstrate a speed-up by a factor of 7 × in a typical scenario involving laser pulse interaction with an underdense plasma due to the use of an adaptive mesh.

Graphical abstract

References

  1. 1.

    V. Malka, Phys. Plasmas 19, 055501 (2012)

    ADS  Article  Google Scholar 

  2. 2.

    H. Daido, M. Nishiuchi, A.S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012)

    ADS  Article  Google Scholar 

  3. 3.

    S. Brunner, E.J. Valeo, Phys. Rev. Lett. 93, 145003 (2004)

    ADS  Article  Google Scholar 

  4. 4.

    D. Bénisti, O. Morice, L. Gremillet, E. Siminos, D.J. Strozzi, Phys. Rev. Lett. 105, 015001 (2010)

    ADS  Article  Google Scholar 

  5. 5.

    B.J. Winjum, R.L. Berger, T. Chapman, J.W. Banks, S. Brunner, Phys. Rev. Lett. 111, 105002 (2013)

    ADS  Article  Google Scholar 

  6. 6.

    U. Teubner, P. Gibbon, Rev. Mod. Phys. 81, 445 (2009)

    ADS  Article  Google Scholar 

  7. 7.

    A.M. Bykov, R.A. Treumann, Astron. Astrophys. Rev. 19, 1 (2011)

    ADS  Article  Google Scholar 

  8. 8.

    M. Shoucri, Eulerian codes for the numerical solution of the kinetic equations of plasmas (Nova Science Publishers, New York, 2011)

  9. 9.

    N. Besse, G. Latu, A. Ghizzo, E. Sonnendrücker, P. Bertrand, J. Comput. Phys. 227, 7889 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    A. Macchi, A.S. Nindrayog, F. Pegoraro, Phys. Rev. E 85, 046402 (2012)

    ADS  Article  Google Scholar 

  11. 11.

    C. Cheng, G. Knorr, J. Comput. Phys. 22, 330 (1976)

    ADS  Article  Google Scholar 

  12. 12.

    F. Filbet, E. Sonnendrücker, P. Bertrand, J. Comput. Phys. 172, 166 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    T. Arber, R. Vann, J. Comput. Phys. 180, 339 (2002)

    ADS  Article  Google Scholar 

  14. 14.

    A. Ghizzo, F. Huot, P. Bertrand, J. Comput. Phys. 186, 47 (2003)

    ADS  Article  Google Scholar 

  15. 15.

    N. Sircombe, T. Arber, J. Comput. Phys. 228, 4773 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    A. Grassi, L. Fedeli, A. Sgattoni, A. Macchi, Plasma Phys. Controll. Fus. 58, 034021 (2016)

    ADS  Article  Google Scholar 

  17. 17.

    B. Svedung Wettervik, T.C. DuBois, T. Fülöp, Phys. Plasmas 23, 053103 (2016)

    ADS  Article  Google Scholar 

  18. 18.

    J.W. Banks, J.A.F. Hittinger, IEEE Trans. Plasma Sci. 38, 2198 (2010)

    ADS  Article  Google Scholar 

  19. 19.

    J.L. Vay, D.P. Grote, R.H. Cohen, A. Friedman, Comput. Sci. Discov. 5, 014019 (2012)

    Article  Google Scholar 

  20. 20.

    M.R. Dorr, F. Garaizar, J.A. Hittinger, J. Comput. Phys. 177, 233 (2002)

    ADS  Article  Google Scholar 

  21. 21.

    R.R. Arslanbekov, V.I. Kolobov, A.A. Frolova, Phys. Rev. E 88, 063301 (2013)

    ADS  Article  Google Scholar 

  22. 22.

    J. Hittinger, J. Banks, J. Comput. Phys. 241, 118 (2013)

    ADS  Article  Google Scholar 

  23. 23.

    veritas, http://ft.nephy.chalmers.se/veritas/

  24. 24.

    F. Huot, A. Ghizzo, P. Bertrand, E. Sonnendrucker, O. Coulaud, IEEE Trans. Plasma Sci. 28, 1170 (2000)

    Article  Google Scholar 

  25. 25.

    A. Ghizzo, P. Bertrand, Phys. Plasmas 20, 082109 (2013)

    ADS  Article  Google Scholar 

  26. 26.

    M.J. Berger, J. Oliger, J. Comput. Phys. 53, 484 (1984)

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    M. Berger, P. Colella, J. Comput. Phys. 82, 64 (1989)

    ADS  Article  Google Scholar 

  28. 28.

    M. Berger, I. Rigoutsos, IEEE Trans. Syst. Man Cybern. 21, 1278 (1991)

    Article  Google Scholar 

  29. 29.

    J. Bell, M. Berger, J. Saltzman, M. Welcome, SIAM J. Scient. Comput. 15, 127 (1994)

    Article  Google Scholar 

  30. 30.

    J. Ray, C.A. Kennedy, S. Lefantzi, H.N. Najm, SIAM J. Scient. Comput. 29, 139 (2007)

    Article  Google Scholar 

  31. 31.

    C.W. Shu, Tech. Rep. NASA/CR-97-206253, NASA Langley Research Center (1997)

  32. 32.

    K. Sebastian, C.W. Shu, J. Scient. Comput. 19, 405 (2003)

    Article  Google Scholar 

  33. 33.

    C. Shen, J.M. Qiu, A. Christlieb, J. Comput. Phys. 230, 3780 (2011)

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    P. McCorquodale, P. Colella, Commun. Appl. Math. Comput. Sci. 6, 1 (2011)

    MathSciNet  Article  Google Scholar 

  35. 35.

    C. Chaplin, P. Colella, arXiv:math.NA/1506.02999v1 (2015)

  36. 36.

    S.T. Zalesak, J. Scient. Comput. 31, 335 (1979)

    MathSciNet  Google Scholar 

  37. 37.

    Q. Zhang, H. Johansen, P. Colella, SIAM J. Scient. Comput. 34, B179 (2012)

    Article  Google Scholar 

  38. 38.

    C.A. Kennedy, M.H. Carpenter, Appl. Numer. Math. 44, 139 (2003)

    MathSciNet  Article  Google Scholar 

  39. 39.

    T.D. Arber, K. Bennett, C.S. Brady, A. Lawrence-Douglas, M.G. Ramsay, N.J. Sircombe, P. Gillies, R.G. Evans, H. Schmitz, A.R. Bell et al., Plasma Phys. Controll. Fus. 57, 1 (2015)

    Google Scholar 

  40. 40.

    J.H. Marburger, R.F. Tooper, Phys. Rev. Lett. 35, 1001 (1975)

    ADS  Article  Google Scholar 

  41. 41.

    V.V. Goloviznin, T.J. Schep, Phys. Plasmas 7, 1564 (2000)

    ADS  Article  Google Scholar 

  42. 42.

    F. Cattani, A. Kim, D. Anderson, M. Lisak, Phys. Rev. E 62, 1234 (2000)

    ADS  Article  Google Scholar 

  43. 43.

    E. Siminos, M. Grech, S. Skupin, T. Schlegel, V.T. Tikhonchuk, Phys. Rev. E 86, 056404 (2012)

    ADS  Article  Google Scholar 

  44. 44.

    A.I. Akhiezer, R.V. Polovin, Sov. Phys. JETP 3, 696 (1956)

    Google Scholar 

  45. 45.

    P. Kaw, J. Dawson, Phys. Fluids 13, 472 (1970)

    ADS  Article  Google Scholar 

  46. 46.

    S.M. Weng, M. Murakami, P. Mulser, Z.M. Sheng, New J. Phys. 14, 063026 (2012)

    ADS  Article  Google Scholar 

  47. 47.

    E. Siminos, B. Svedung Wettervik, M. Grech, T. Fülöp, arXiv:1603.06436 (2016)

  48. 48.

    A. Macchi, F. Cattani, T.V. Liseykina, F. Cornolti, Phys. Rev. Lett. 94, 165003 (2005)

    ADS  Article  Google Scholar 

  49. 49.

    O. Klimo, J. Psikal, J. Limpouch, V.T. Tikhonchuk, Phys. Rev. ST Accel. Beams 11, 031301 (2008)

    ADS  Article  Google Scholar 

  50. 50.

    A.P.L. Robinson, M. Zepf, S. Kar, R.G. Evans, C. Bellei, New J. Phys. 10, 013021 (2008)

    ADS  Article  Google Scholar 

  51. 51.

    X.Q. Yan, C. Lin, Z.M. Sheng, Z.Y. Guo, B.C. Liu, Y.R. Lu, J.X. Fang, J.E. Chen, Phys. Rev. Lett. 100, 135003 (2008)

    ADS  Article  Google Scholar 

  52. 52.

    N. Naumova, T. Schlegel, V.T. Tikhonchuk, C. Labaune, I.V. Sokolov, G. Mourou, Phys. Rev. Lett. 102, 025002 (2009)

    ADS  Article  Google Scholar 

  53. 53.

    S. Guerin, G. Laval, P. Mora, J.C. Adam, A. Heron, A. Bendib, Phys. Plasmas 2, 2807 (1995)

    ADS  Article  Google Scholar 

  54. 54.

    S. Guerin, P. Mora, J.C. Adam, A. Heron, G. Laval, Phys. Plasmas 3, 2693 (1996)

    ADS  Article  Google Scholar 

  55. 55.

    A. Ghizzo, D. DelSarto, T. Reveille, N. Besse, R. Klein, Phys. Plasmas 14, 062702 (2007)

    ADS  Article  Google Scholar 

  56. 56.

    M.J. Grote, T. Mitkova, J. Comput. Appl. Math. 234, 3283 (2010)

    MathSciNet  Article  Google Scholar 

  57. 57.

    M. Shoucri, J.P. Matte, F. Vidal, Laser Part. Beams 31, 613 (2013)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Timothy C. DuBois.

Additional information

Contribution to the Topical Issue “Relativistic Laser Plasma Interactions”, edited by Tünde Fülöp, Francesco Pegoraro, and Vladimir Tikhonchuk.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wettervik, B.S., DuBois, T.C., Siminos, E. et al. Relativistic Vlasov-Maxwell modelling using finite volumes and adaptive mesh refinement. Eur. Phys. J. D 71, 157 (2017). https://doi.org/10.1140/epjd/e2017-80102-2

Download citation