Relativistic Vlasov-Maxwell modelling using finite volumes and adaptive mesh refinement

  • Benjamin Svedung Wettervik
  • Timothy C. DuBois
  • Evangelos Siminos
  • Tünde Fülöp
Open Access
Regular Article
Part of the following topical collections:
  1. Topical Issue: Relativistic Laser Plasma Interactions

Abstract

The dynamics of collisionless plasmas can be modelled by the Vlasov-Maxwell system of equations. An Eulerian approach is needed to accurately describe processes that are governed by high energy tails in the distribution function, but is of limited efficiency for high dimensional problems. The use of an adaptive mesh can reduce the scaling of the computational cost with the dimension of the problem. Here, we present a relativistic Eulerian Vlasov-Maxwell solver with block-structured adaptive mesh refinement in one spatial and one momentum dimension. The discretization of the Vlasov equation is based on a high-order finite volume method. A flux corrected transport algorithm is applied to limit spurious oscillations and ensure the physical character of the distribution function. We demonstrate a speed-up by a factor of 7 × in a typical scenario involving laser pulse interaction with an underdense plasma due to the use of an adaptive mesh.

Graphical abstract

References

  1. 1.
    V. Malka, Phys. Plasmas 19, 055501 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    H. Daido, M. Nishiuchi, A.S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    S. Brunner, E.J. Valeo, Phys. Rev. Lett. 93, 145003 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    D. Bénisti, O. Morice, L. Gremillet, E. Siminos, D.J. Strozzi, Phys. Rev. Lett. 105, 015001 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    B.J. Winjum, R.L. Berger, T. Chapman, J.W. Banks, S. Brunner, Phys. Rev. Lett. 111, 105002 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    U. Teubner, P. Gibbon, Rev. Mod. Phys. 81, 445 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    A.M. Bykov, R.A. Treumann, Astron. Astrophys. Rev. 19, 1 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    M. Shoucri, Eulerian codes for the numerical solution of the kinetic equations of plasmas (Nova Science Publishers, New York, 2011)Google Scholar
  9. 9.
    N. Besse, G. Latu, A. Ghizzo, E. Sonnendrücker, P. Bertrand, J. Comput. Phys. 227, 7889 (2008)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Macchi, A.S. Nindrayog, F. Pegoraro, Phys. Rev. E 85, 046402 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    C. Cheng, G. Knorr, J. Comput. Phys. 22, 330 (1976)ADSCrossRefGoogle Scholar
  12. 12.
    F. Filbet, E. Sonnendrücker, P. Bertrand, J. Comput. Phys. 172, 166 (2001)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    T. Arber, R. Vann, J. Comput. Phys. 180, 339 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    A. Ghizzo, F. Huot, P. Bertrand, J. Comput. Phys. 186, 47 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    N. Sircombe, T. Arber, J. Comput. Phys. 228, 4773 (2009)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Grassi, L. Fedeli, A. Sgattoni, A. Macchi, Plasma Phys. Controll. Fus. 58, 034021 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    B. Svedung Wettervik, T.C. DuBois, T. Fülöp, Phys. Plasmas 23, 053103 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    J.W. Banks, J.A.F. Hittinger, IEEE Trans. Plasma Sci. 38, 2198 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    J.L. Vay, D.P. Grote, R.H. Cohen, A. Friedman, Comput. Sci. Discov. 5, 014019 (2012)CrossRefGoogle Scholar
  20. 20.
    M.R. Dorr, F. Garaizar, J.A. Hittinger, J. Comput. Phys. 177, 233 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    R.R. Arslanbekov, V.I. Kolobov, A.A. Frolova, Phys. Rev. E 88, 063301 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    J. Hittinger, J. Banks, J. Comput. Phys. 241, 118 (2013)ADSCrossRefGoogle Scholar
  23. 23.
  24. 24.
    F. Huot, A. Ghizzo, P. Bertrand, E. Sonnendrucker, O. Coulaud, IEEE Trans. Plasma Sci. 28, 1170 (2000)CrossRefGoogle Scholar
  25. 25.
    A. Ghizzo, P. Bertrand, Phys. Plasmas 20, 082109 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    M.J. Berger, J. Oliger, J. Comput. Phys. 53, 484 (1984)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Berger, P. Colella, J. Comput. Phys. 82, 64 (1989)ADSCrossRefGoogle Scholar
  28. 28.
    M. Berger, I. Rigoutsos, IEEE Trans. Syst. Man Cybern. 21, 1278 (1991)CrossRefGoogle Scholar
  29. 29.
    J. Bell, M. Berger, J. Saltzman, M. Welcome, SIAM J. Scient. Comput. 15, 127 (1994)CrossRefGoogle Scholar
  30. 30.
    J. Ray, C.A. Kennedy, S. Lefantzi, H.N. Najm, SIAM J. Scient. Comput. 29, 139 (2007)CrossRefGoogle Scholar
  31. 31.
    C.W. Shu, Tech. Rep. NASA/CR-97-206253, NASA Langley Research Center (1997)Google Scholar
  32. 32.
    K. Sebastian, C.W. Shu, J. Scient. Comput. 19, 405 (2003)CrossRefGoogle Scholar
  33. 33.
    C. Shen, J.M. Qiu, A. Christlieb, J. Comput. Phys. 230, 3780 (2011)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    P. McCorquodale, P. Colella, Commun. Appl. Math. Comput. Sci. 6, 1 (2011)MathSciNetCrossRefGoogle Scholar
  35. 35.
    C. Chaplin, P. Colella, arXiv:math.NA/1506.02999v1 (2015)
  36. 36.
    S.T. Zalesak, J. Scient. Comput. 31, 335 (1979)MathSciNetGoogle Scholar
  37. 37.
    Q. Zhang, H. Johansen, P. Colella, SIAM J. Scient. Comput. 34, B179 (2012)CrossRefGoogle Scholar
  38. 38.
    C.A. Kennedy, M.H. Carpenter, Appl. Numer. Math. 44, 139 (2003)MathSciNetCrossRefGoogle Scholar
  39. 39.
    T.D. Arber, K. Bennett, C.S. Brady, A. Lawrence-Douglas, M.G. Ramsay, N.J. Sircombe, P. Gillies, R.G. Evans, H. Schmitz, A.R. Bell et al., Plasma Phys. Controll. Fus. 57, 1 (2015)Google Scholar
  40. 40.
    J.H. Marburger, R.F. Tooper, Phys. Rev. Lett. 35, 1001 (1975)ADSCrossRefGoogle Scholar
  41. 41.
    V.V. Goloviznin, T.J. Schep, Phys. Plasmas 7, 1564 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    F. Cattani, A. Kim, D. Anderson, M. Lisak, Phys. Rev. E 62, 1234 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    E. Siminos, M. Grech, S. Skupin, T. Schlegel, V.T. Tikhonchuk, Phys. Rev. E 86, 056404 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    A.I. Akhiezer, R.V. Polovin, Sov. Phys. JETP 3, 696 (1956)Google Scholar
  45. 45.
    P. Kaw, J. Dawson, Phys. Fluids 13, 472 (1970)ADSCrossRefGoogle Scholar
  46. 46.
    S.M. Weng, M. Murakami, P. Mulser, Z.M. Sheng, New J. Phys. 14, 063026 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    E. Siminos, B. Svedung Wettervik, M. Grech, T. Fülöp, arXiv:1603.06436 (2016)
  48. 48.
    A. Macchi, F. Cattani, T.V. Liseykina, F. Cornolti, Phys. Rev. Lett. 94, 165003 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    O. Klimo, J. Psikal, J. Limpouch, V.T. Tikhonchuk, Phys. Rev. ST Accel. Beams 11, 031301 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    A.P.L. Robinson, M. Zepf, S. Kar, R.G. Evans, C. Bellei, New J. Phys. 10, 013021 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    X.Q. Yan, C. Lin, Z.M. Sheng, Z.Y. Guo, B.C. Liu, Y.R. Lu, J.X. Fang, J.E. Chen, Phys. Rev. Lett. 100, 135003 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    N. Naumova, T. Schlegel, V.T. Tikhonchuk, C. Labaune, I.V. Sokolov, G. Mourou, Phys. Rev. Lett. 102, 025002 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    S. Guerin, G. Laval, P. Mora, J.C. Adam, A. Heron, A. Bendib, Phys. Plasmas 2, 2807 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    S. Guerin, P. Mora, J.C. Adam, A. Heron, G. Laval, Phys. Plasmas 3, 2693 (1996)ADSCrossRefGoogle Scholar
  55. 55.
    A. Ghizzo, D. DelSarto, T. Reveille, N. Besse, R. Klein, Phys. Plasmas 14, 062702 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    M.J. Grote, T. Mitkova, J. Comput. Appl. Math. 234, 3283 (2010)MathSciNetCrossRefGoogle Scholar
  57. 57.
    M. Shoucri, J.P. Matte, F. Vidal, Laser Part. Beams 31, 613 (2013)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Department of PhysicsChalmers University of TechnologyGothenburgSweden

Personalised recommendations