Eckhaus instability in the Lugiato-Lefever model

  • Nicolas Périnet
  • Nicolas Verschueren
  • Saliya Coulibaly
Regular Article
Part of the following topical collections:
  1. Topical Issue: Theory and applications of the Lugiato-Lefever Equation


We study theoretically the primary and secondary instabilities undergone by the stationary periodic patterns in the Lugiato-Lefever equation in the focusing regime. Direct numerical simulations in a one-dimensional periodic domain show discrete changes of the periodicity of the patterns emerging from unstable homogeneous steady states. Through continuation methods of the steady states we reveal that the system exhibits a set of wave instability branches. The organisation of these branches suggests the existence of an Eckhaus scenario, which is characterized in detail by means of the derivation of their amplitude equation in the weakly nonlinear regime. The continuation in the highly nonlinear regime shows that the furthest branches become unstable through a Hopf bifurcation.

Graphical abstract


  1. 1.
    M. Haelterman, S. Trillo, S. Wabnitz, Opt. Commun. 91, 401 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    P. Kockaert, P. Tassin, G. Van der Sande, I. Veretennicoff, M. Tlidi, Phys. Rev. A 74, 033822 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    L. Gelens, G. Van der Sande, P. Tassin, M. Tlidi, P. Kockaert, D. Gomila, I. Veretennicoff, J. Danckaert, Phys. Rev. A 75, 063812 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Y.K. Chembo, N. Yu, Phys. Rev. A 82, 033801 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    J. Ye, T.W. Lynn, Adv. At. Mol. Opt. Phys. 49, 1 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    M. Haragus, G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems (Springer, 2011)Google Scholar
  7. 7.
    L.A. Lugiato, R. Lefever, Phys. Rev. Lett. 58, 2209 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    P. Mandel, M. Tlidi, J. Opt. B: Quantum Semiclassical Opt. 6, R60 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    S. Coulibaly, M. Taki, M. Tlidi, Opt. Exp. 22, 483 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    W.J. Firth, A.J. Scroggie, G.S. McDonald, L.A. Lugiato, Phys. Rev. A 46, R3609(R) (1992)ADSCrossRefGoogle Scholar
  11. 11.
    M. Tlidi, R. Lefever, P. Mandel, Quantum Semiclassical Opt.: J. Eur. Opt. Soc. B 8, 931 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Liu, F. Leo, S. Coulibaly, M. Taki, Phys. Rev. A 90, 033837 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    C. Godey, I.V. Balakireva, A. Coillet, Y.K. Chembo, Phys. Rev. A 89, 063814 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    W. Eckhaus, Studies in Nonlinear Stability Theory (Springer-Verlag, Berlin, Germany, 1965)Google Scholar
  15. 15.
    L.S. Tuckerman, D. Barkley, Physica D 46, 57 (1990)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    D. Gomila, A.J. Scroggie, W.J. Firth, Physica D 227, 70 (2007)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    P. Parra-Rivas, D. Gomila, M.A. Matías, S. Coen, L. Gelens, Phys. Rev. A 89, 043813 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    P. Parra-Rivas, D. Gomila, E. Knobloch, S. Coen, L. Gelens, Opt. Lett. 41, 2402 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    P. Parra-Rivas, E. Knobloch, D. Gomila, L. Gelens, Phys. Rev. A 93, 063839 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    E. Allgower, K. Georg, Introduction to Numerical Continuation Methods (Society for Industrial and Applied Mathematics, 2003)Google Scholar
  21. 21.
    W.J.F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2000)Google Scholar
  22. 22.
    H.A. Dijkstra, F.W. Wubs, A.K. Cliffe, E. Doedel, I.F. Dragomirescu, B. Eckhardt, A.Y. Gelfgat, A.L. Hazel, V. Lucarini, A.G. Salinger, E.T. Phipps, J. Sanchez-Umbria, H. Schuttelaars, L.S. Tuckerman, U. Thiele, Commun. Comput. Phys. 15, 1 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Y. Kuznetsov, Elements of Applied Bifurcation Theory (Springer-Verlag, Berlin, Germany, 2004)Google Scholar
  24. 24.
    F. Schilder, H.M. Osinga, W. Vogt, SIAM J. Appl. Dyn. Syst. 4, 459 (2005)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    E.J. Doedel, M.J. Friedman, J. Comput. Appl. Math. 26, 155 (1989)MathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Coulibaly, M. Taki, A. Bendahmane, G. Millot, B. Kibler, M.G. Clerc, private communicationGoogle Scholar
  27. 27.
    M. Lowe, J. Gollub, Phys. Rev. Lett. 55, 2575 (1985)ADSCrossRefGoogle Scholar
  28. 28.
    H. Riecke, H.G. Paap, Phys. Rev. A 33, 547 (1986)ADSCrossRefGoogle Scholar
  29. 29.
    C. Elphick, E. Tirapegui, M. Brachet, P. Coullet, G. Iooss, Physica D 29, 95 (1987)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    A. Bergeon, J. Burke, E. Knobloch, I. Mercader, Phys. Rev. E 78, 046201 (2008)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    U. Bortolozzo, M.G. Clerc, C. Falcon, S. Residori, R. Rojas, Phys. Rev. Lett. 96, 214501 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    D. Gomila, P. Colet, Phys. Rev. A 68, 011801 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    M.G. Clerc, N. Verschueren, Phys. Rev. E 88, 052916 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Departamento de Física, Facultad de ciencias Físicas y Matemáticas, Universidad de ChileSantiagoChile
  2. 2.Department of Engineering MathematicsUniversity of Bristol, Queen’s Building, University WalkBristolUK
  3. 3.Laboratoire de Physique des Lasers, Atomes et Molecules, CNRS UMR 8523, Université des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance

Personalised recommendations