Advertisement

Size dependence of thermal stability of Pt clusters bound to Si substrate surface prepared by cluster impact deposition

  • Nobuyuki Fukui
  • Hisato Yasumatsu
Regular Article
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems at the Nanoscale

Abstract

Thermal behavior of Pt10 and Pt1 bound to a silicon substrate prepared by the impact of size-selected Pt cluster ions at 1 eV per Pt atom was investigated. Their height and diameter were obtained by statistical analysis of their images using scanning-tunneling microscopy. The Pt10 are stably bound to the Si surface as monatomic-layered Pt10Si x disks with insertion of Si atoms into the clusters at the moment of the impact, and they start to be decomposed between 623 and 673 K under vacuum conditions. The thermal stability of the Pt10Si x disks is comparable to that of a Pt thin film prepared on a Si substrate, but inferior to that of Pt30 disks on the Si substrate. Comparing with thermal behavior of Pt atoms and a PtSi thin film on the Si substrate, it has been concluded that more Si atoms start to diffuse into a Pt10Si x disk between 623 and 673 K, while they do not into a Pt30 disk having a close-packed arrangement of the Pt atoms as high as 673 K, owing to a higher barrier for the Si insertion into the close-packed cluster disk than into the Pt10Si x disk having a longer Pt-Pt internuclear distance.

Graphical abstract

References

  1. 1.
    Nanocatalysis, edited by U. Heiz, U. Landman (Springer, Berlin, 2007)Google Scholar
  2. 2.
    U. Heiz, A. Sanchez, S. Abbet, W.D. Schneider, J. Am. Chem. Soc. 121, 3214 (1999)CrossRefGoogle Scholar
  3. 3.
    B. Yoon, H. Häkkinen, U. Landman, A.S. Wörz, J.M. Antonietti, S. Abbet, K. Judai, U. Heiz, Science 307, 403 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    W.E. Kaden, T. Wu, W.A. Kunkel, S.L. Anderson, Science 326, 826 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    S. Bonanni, K. Aït-Mansour, W. Harbich, H. Brune, J. Am. Chem. Soc. 134, 3445 (2012)CrossRefGoogle Scholar
  6. 6.
    R.E. Winams, S. Vajda, B. Lee, S.J. Riley, S. Seifert, G.Y. Tikhonoy, N.A. Tomczyk, J. Phys. Chem. B 108, 18105 (2004)CrossRefGoogle Scholar
  7. 7.
    Y. Dai, T.J. Gorey, S.L. Anderson, S. Lee, S. Seifert, R.E. Winans, J. Phys. Chem. C 121, 361 (2017)CrossRefGoogle Scholar
  8. 8.
    V.N. Popok, I. Barke, E.E.B. Campbell, K.H. Meiwes-Broer, Surf. Sci. Rep. 66, 347 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    H. Yasumatsu, T. Kondow, Rep. Prog. Phys. 66, 1783 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    W. Yamaguchi, H. Ohashi, J. Murakami, Chem. Phys. Lett. 364, 1 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    H. Yasumatsu, T. Hayakawa, S. Koizumi, T. Kondow, J. Chem. Phys. 123, 124709 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    H. Yasumatsu, T. Hayakawa, T. Kondow, J. Chem. Phys. 124, 014701 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    H. Yasumatsu, T. Hayakawa, T. Kondow, Chem. Phys. Lett. 487, 279 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    H. Yasumatsu, P. Murugan, Y. Kawazoe, Phys. Stat. Sol. B 6, 1193 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    H. Yasumatsu, N. Fukui, J. Phys. Chem. C 119, 11217 (2015)CrossRefGoogle Scholar
  16. 16.
    H. Yasumatsu, N. Fukui, Surf. Interface Anal. 46, 1204 (2014)CrossRefGoogle Scholar
  17. 17.
    H. Yasumatsu, N. Fukui, Phys. Chem. Chem. Phys. 16, 26493 (2014)CrossRefGoogle Scholar
  18. 18.
    H. Yasumatsu, N. Fukui, Can. J. Chem. Eng. 92, 1531 (2014)CrossRefGoogle Scholar
  19. 19.
    H. Yasumatsu, N. Fukui, Catal. Sci. Technol. 6, 6910 (2016)CrossRefGoogle Scholar
  20. 20.
    A. Beniya, H. Hirata, Y. Watanabe, J. Phys. Chem. Lett. 7, 4710 (2016)CrossRefGoogle Scholar
  21. 21.
    N. Fukui, H. Yasumatsu, Eur. Phys. J. D 67, 81 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    C. Ji, R. Ragan, S. Kim, Y.A. Chang, Y. Chen, D.A.A. Ohlberg, R.S. Williams, Appl. Phys. A 80, 1301 (2005)CrossRefGoogle Scholar
  23. 23.
    A. Wawro, S. Suto, A. Kasuya, Phys. Rev. B 72, 205302 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    A. Wawro, S. Suto, A. Kasuya, Jpn J. Appl. Phys. 45, 2166 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    P. Höpfner, M. Wisniewski, F. Sandrock, J. Schäfer, R. Claessen, Phys. Rev. B 82, 075431 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    M. Gao, Y. Pan, W. Xu, L. Huang, Y. Wang, Y. Lin, H.J. Gao, Appl. Surf. Sci. 314, 841 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    J.C. Bondos, N.E. Drummer, A.A. Gewirth R.G. Nuzzo, J. Phys. Chem. B 103, 3099 (1999)CrossRefGoogle Scholar
  28. 28.
    W. Koczorowski, M. Bazarnik, M. Cegiel, A. Petroutchik, A. Wawro, R. Czajka, Appl. Surf. Sci. 256, 4215 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    H. Yasumatsu, M. Fuyuki, T. Hayakawa, T. Kondow, J. Phys. Conf. Ser. 185, 012057 (2009)CrossRefGoogle Scholar
  30. 30.
    G. Larrieu, E. Dubois, X. Wallart, X. Baie, J. Katcki, J. Appl. Phys. 94, 7801 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.East Tokyo Laboratory, Genesis Research InstituteChibaJapan
  2. 2.Cluster Research Laboratory, Toyota Technological Institute: In East Tokyo Laboratory, Genesis Research InstituteChibaJapan

Personalised recommendations