Advertisement

A review of recent progress in understanding the spontelectric state of matter

  • Oksana Plekan
  • Alexander Rosu-Finsen
  • Andrew M. Cassidy
  • Jérôme Lasne
  • Martin R. S. McCoustra
  • David Field
Topical Review
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems at the Nanoscale

Abstract

The spontelectric state of matter is exemplified by the presence of static, spontaneous electric fields extending throughout thin films of dipolar solids. The spontelectric state was discovered using a low energy electron beam technique, using the ASTRID storage ring at Aarhus University. Following a resume of the characteristics and of a model for the spontelectric effect, a description is given of the counter-intuitive behaviour of fields in films of methyl formate as a function of deposition temperature, T. It is found that films for T ≤ 77.5 K show the expected decrease in the field with increasing T but, for T ≥ 77.5 K, an increase in the field for higher T is revealed. Analysis of these results illustrates the non-linear and non-local characteristics of the spontelectric state. Recently it has been shown that Reflection-Absorption Infrared Spectroscopy (RAIRS) provides a new and independent technique for the detection of the spontelectric effect, through the observation of vibrational Stark shifts in spectra of films. Stark shifts for nitrous oxide are demonstrated to be in harmony with electric fields measured using the electron beam technique. The method is then applied to carbon monoxide, showing that this material displays the spontelectric effect between deposition temperatures of 20 K and 26 K.

Graphical abstract

References

  1. 1.
    R. Balog, P. Cicman, N. Jones, D. Field, Phys. Rev. Lett. 102, 2 (2009) CrossRefGoogle Scholar
  2. 2.
    D. Field, O. Plekan, A. Cassidy, R. Balog, N.C. Jones, J. Dunger, Int. Rev. Phys. Chem. 32, 34 (2013) CrossRefGoogle Scholar
  3. 3.
    O. Plekan, A. Cassidy, R. Balog, N.C. Jones, D. Field, Phys. Chem. Chem. Phys. 14, 9972 (2012) CrossRefGoogle Scholar
  4. 4.
    A.M. Cassidy, M.R.V. Jørgensen, A. Rosu-Finsen, J. Lasne, J.H. Jørgensen, A. Galvic, V. Lauter, B.B. Iversen, M.R.S. McCoustra, D. Field, J. Phys. Chem. C 120, 24130 (2016) CrossRefGoogle Scholar
  5. 5.
    A.M. Cassidy, O. Plekan, R. Balog, J. Dunger, D. Field, J. Phys. Chem. A 118, 6615 (2014) CrossRefGoogle Scholar
  6. 6.
    R. Balog, P. Cicman, D. Field, L. Feketeova, K. Hoydalsvik, J. Phys. Chem. A 115, 6820 (2011) CrossRefGoogle Scholar
  7. 7.
    S. Horiuchi, Y. Tokura, Nat. Mater. 7, 357 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    I.K. Gavra, A.N. Pilidi, A.A. Tsekouras, J. Chem. Phys. 146, 104701 (2017) ADSCrossRefGoogle Scholar
  9. 9.
    A. Rosu-Finsen, J. Lasne, A. Cassidy, M.R.S. McCoustra, D. Field, Ap. J. 832, 1 (2016) ADSCrossRefGoogle Scholar
  10. 10.
    A. Cassidy, O. Plekan, J. Dunger, R. Balog, N.C. Jones, J. Lasne, A. Rosu-Finsen, M.R.S. McCoustra, D. Field, Phys. Chem. Chem. Phys. 16, 23843 (2014) CrossRefGoogle Scholar
  11. 11.
    A. Cassidy, O. Plekan, R. Balog, N.C. Jones, D. Field, Phys. Chem. Chem. Phys. 15, 108 (2013) CrossRefGoogle Scholar
  12. 12.
    E. Cohen de Lara, J. Vincent-Geisse, J. Phys. Chem. 80, 1922 (1976) CrossRefGoogle Scholar
  13. 13.
    B.L. Maschhoff, J.P. Cowin, J. Chem. Phys. 101, 8138 (1994) ADSCrossRefGoogle Scholar
  14. 14.
    D. Fernández-Torre, O. Kupiainen, P. Pyykkö, L. Halonen, Chem. Phys. Lett. 471, 239 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    C. Kittel, Introduction to Solid State Physics, 3rd edn. (Wiley, 2005) Google Scholar
  16. 16.
    J. Topping, Proc. R. Soc. Lond. Ser. A 114, 67 (1927) ADSCrossRefGoogle Scholar
  17. 17.
    S.F. Swallen, K.L. Kearns, M.K. Mapes, Y.S. Kim, R.J. McMahon, M.D. Ediger, T. Wu, L. Yu, S. Satija, Science 315, 353 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    J. Lasne, A. Rosu-Finsen, A. Cassidy, M.R.S. McCoustra, D. Field, Phys. Chem. Chem. Phys. 17, 20971 (2015) CrossRefGoogle Scholar
  19. 19.
    L.H. Jones, B.I. Swanson, J. Phys. Chem. 95, 2701 (1991) CrossRefGoogle Scholar
  20. 20.
    J. Lasne, A. Rosu-Finsen, A. Cassidy, M.R.S. McCoustra, D. Field, Phys. Chem. Chem. Phys. 17, 30177 (2015) CrossRefGoogle Scholar
  21. 21.
    S.A. Blair, A.J. Thakkar, J. Chem. Phys. 141, 074306 (2014) ADSCrossRefGoogle Scholar
  22. 22.
    M. Roman, Private Communication (Heriot-Watt University) Google Scholar
  23. 23.
    G.M. Muñoz Caro, Y.-J. Chen, S. Aparicio, A. Jiménez-Escobar, A. Rosu-Finsen, J. Lasne, M.R.S. McCoustra, Astron. Astrophys. A16, 589 (2016) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Oksana Plekan
    • 1
    • 2
  • Alexander Rosu-Finsen
    • 3
  • Andrew M. Cassidy
    • 1
  • Jérôme Lasne
    • 3
    • 4
  • Martin R. S. McCoustra
    • 3
  • David Field
    • 1
  1. 1.ISA, Department of Physics and Astronomy, Aarhus UniversityAarhus CDenmark
  2. 2.Sincrotrone Trieste, S.C.p.A. di Interesse NazionaleTriesteItaly
  3. 3.Institute of Chemical Sciences, Heriot-Watt UniversityAS EdinburghUK
  4. 4.Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris-Est Créteil, UniversitéParis Diderot, Faculté des Sciences et TechnologieCréteil CedexFrance

Personalised recommendations