The synthesis and electrical transport of ligand-protected Au13 clusters

  • Zhongxia Wei
  • Wanrun Jiang
  • Zhanbin Bai
  • Zhen Lian
  • Zhigang Wang
  • Fengqi Song
Regular Article


The ligand-protected Au13 clusters have been synthesized by using meso-2,3-dimercaptosuccinic acid as the reducing and stabilizing agent. Transmission electron microscopic analysis shows a size distribution of 1.4 ± 0.6 nm. Optical spectrum shows an absorbance peak at 390 nm. The electrical transport measurement devices are fabricated using the electro-migration method. Coulomb blockade is observed at the temperature of 1.6 K, revealing the formation of the tunneling junction. The Coulomb oscillation’s on/off ratio is nearly 5. Three peaks are extracted in the dI/dV data and attributed to the energy levels of Au13 clusters, gapped by about 60 meV. First principle calculations are carried out to interpret the energy diagram.

Graphical abstract


Clusters and Nanostructures 


  1. 1.
    R.S. McCoy, S. Choi, G. Collins, B.J. Ackerson, C.J. Ackerson, ACS Nano 7, 2610 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Turner, V.B. Golovko, O.P.H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M.S. Tikhov, R.M. Lambert, Nature 454, 981 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    S. Antonello, A.H. Holm, E. Instuli, F. Maran, J. Am. Chem. Soc. 129, 9836 (2007)CrossRefGoogle Scholar
  4. 4.
    D. Lee, R.L. Donkers, G. Wang, A.S. Harper, R.W. Murray, J. Am. Chem. Soc. 126, 6193 (2004)CrossRefGoogle Scholar
  5. 5.
    X. Wang, X. Pan, M. Gao, J. Yu, J. Jiang, J. Zhang, R. Zhang, Adv. Electron. Mater. 2, 1600228 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Yun, D.W. Mueller, M. Hossain, V. Misra, S. Gangopadhyay, IEEE Electron Dev. Lett. 30, 1362 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Liu, C. Lee, V. Narayanan, G. Pei, E.C. Kan, IEEE Trans. Electron Dev. 49, 1606 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    M. Yun, B. Ramalingam, S. Gangopadhyay, J. Electrochem. Soc. 159, H393 (2012)CrossRefGoogle Scholar
  9. 9.
    Z. Haisheng, A. Mohamed, M. Somik, J.M. Cherian, G. Keshab, K.W.Y. Joel, G. Shubhra, Nanotechnology 26, 355204 (2015)CrossRefGoogle Scholar
  10. 10.
    M.A. Watzky, R.G. Finke, Chem. Mater. 9, 3083 (1997)CrossRefGoogle Scholar
  11. 11.
    H. Tsunoyama, T. Tsukuda, J. Am. Chem. Soc. 131, 18216 (2009)CrossRefGoogle Scholar
  12. 12.
    W.D. Knight, K. Clemenger, W.A. de Heer, W.A. Saunders, M.Y. Chou, M.L. Cohen, Phys. Rev. Lett. 52, 2141 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    T. Huang, R.W. Murray, J. Phys. Chem. B 105, 12498 (2001)CrossRefGoogle Scholar
  14. 14.
    S. Link, A. Beeby, S. FitzGerald, M.A. El-Sayed, T.G. Schaaff, R.L. Whetten, J. Phys. Chem. B 106, 3410 (2002)CrossRefGoogle Scholar
  15. 15.
    M. Gruber, G. Heimel, L. Romaner, J.-L. Brédas, E. Zojer, Phys. Rev. B 77, 165411 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    M. Okumura, Y. Kitagawa, T. Kawakami, M. Haruta, Chem. Phys. Lett. 459, 133 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Shichibu, K. Suzuki, K. Konishi, Nanoscale 4, 4125 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    X. Wu, Y.J. Dong, Struct. Chem. 26, 393 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Shichibu, K. Konishi, Small 6, 1216 (2010)CrossRefGoogle Scholar
  20. 20.
    B. Fresch, E. Hanozin, F. Dufour, F. Remacle, Eur. Phys. J. D 66, 326 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    M. Sugiuchi, Y. Shichibu, T. Nakanishi, Y. Hasegawa, K. Konishi, Chem. Commun. 51, 13519 (2015)CrossRefGoogle Scholar
  22. 22.
    G. Shafai, S. Hong, M. Bertino, T.S. Rahman, J. Phys. Chem. C 113, 12072 (2009)CrossRefGoogle Scholar
  23. 23.
    B.A. Collings, K. Athanassenas, D. Lacombe, D.M. Rayner, P.A. Hackett, J. Chem. Phys. 101, 3506 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Negishi, T. Tsukuda, J. Am. Chem. Soc. 125, 4046 (2003)CrossRefGoogle Scholar
  25. 25.
    D.L. Klein, P.L. McEuen, J.E.B. Katari, R. Roth, A.P. Alivisatos, Appl. Phys. Lett. 68, 2574 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    T. Sato, H. Ahmed, D. Brown, B.F.G. Johnson, J. Appl. Phys. 82, 696 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    T.B. Ronald, P. Andres, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin, R. Reifenberger, Science 272, 1323 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    K.I. Bolotin, F. Kuemmeth, A.N. Pasupathy, D.C. Ralph, Appl. Phys. Lett. 84, 3154 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    H.B. Heersche, Z. de Groot, J.A. Folk, H.S. van der Zant, C. Romeike, M.R. Wegewijs, A. Cornia, Phys. Rev. Lett. 96, 206801 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    H. Park, A.K.L. Lim, A.P. Alivisatos, J. Park, P.L. McEuen, Appl. Phys. Lett. 75, 301 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    A.F. Morpurgo, C.M. Marcus, D.B. Robinson, Appl. Phys. Lett. 74, 2084 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    C. Zhou, C.J. Muller, M.R. Deshpande, J.W. Sleight, M.A. Reed, Appl. Phys. Lett. 67, 1160 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, D.C. Ralph, Nature 417, 722 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess, R.E. Smalley, Science 275, 1922 (1997)CrossRefGoogle Scholar
  35. 35.
    D.L. Klein, R. Roth, A.K.L. Lim, A.P. Alivisatos, P.L. McEuen, Nature 389, 699 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    E. Van Lenthe, E.J. Baerends, J. Comput. Chem. 24, 1142 (2003)CrossRefGoogle Scholar
  39. 39.
    E.V. Lenthe, A. Ehlers, E.-J. Baerends, J. Chem. Phys. 110, 8943 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    E.V. Lenthe, J.G. Snijders, E.J. Baerends, J. Chem. Phys. 105, 6505 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    E.V. Lenthe, E.J. Baerends, J.G. Snijders, J. Chem. Phys. 101, 9783 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    E.V. Lenthe, E.J. Baerends, J.G. Snijders, J. Chem. Phys. 99, 4597 (1993)ADSCrossRefGoogle Scholar
  43. 43.
    G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders, T. Ziegler, J. Comput. Chem. 22, 931 (2001)CrossRefGoogle Scholar
  44. 44.
    R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and College of Physics, Nanjing UniversityNanjingP.R. China
  2. 2.Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin UniversityChangchunP.R. China

Personalised recommendations