On binding specificity of (6–4) photolyase to a T(6–4)T DNA photoproduct

  • Katrine Aalbæk Jepsen
  • Ilia A. Solov’yovEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems at the Nanoscale


Different factors lead to DNA damage and if it is not repaired in due time, the damaged DNA could initiate mutagenesis and cancer. To avoid this deadly scenario, specific enzymes can scavenge and repair the DNA, but the enzymes have to bind first to the damaged sites. We have investigated this binding for a specific enzyme called (6–4) photolyase, which is capable of repairing certain UV-induced damage in DNA. Through molecular dynamics simulations we describe the binding between photolyase and the DNA and reveal that several charged amino acid residues in the enzyme, such as arginines and lysines turn out to be important. Especially R421 is crucial, as it keeps the DNA strands at the damaged site inside the repair pocket of the enzyme separated. DNA photolyase is structurally highly homologous to a protein called cryptochrome. Both proteins are biologically activated similarly, namely through flavin co-factor photoexcitation. It is, however, striking that cryptochrome cannot repair UV-damaged DNA. The present investigation allowed us to conclude on the small but, apparently, critical differences between photolyase and cryptochrome. The performed analysis gives insight into important factors that govern the binding of UV-damaged DNA and reveal why cryptochrome cannot have this functionality.

Graphical abstract

Supplementary material


  1. 1.
    A. Sancar, Chem. Rev. 103, 2203 (2003)CrossRefGoogle Scholar
  2. 2.
    M.J. Maul, T.R.M. Barends, A.F. Glas, M.J. Cryle, T. Domratcheva, S. Schneider, I. Schlichting, T. Carell, Angew. Chem. Int. Ed. 47, 10076 (2008)CrossRefGoogle Scholar
  3. 3.
    Z. Liu, L. Wang, D. Zhong, Phys. Chem. Chem. Phys. 17, 11933 (2015)CrossRefGoogle Scholar
  4. 4.
    D.E. Brash, Trends Genet. 13, 410 (1997)CrossRefGoogle Scholar
  5. 5.
    A. Sancar, L.A. Lindsey-Boltz, K. Ansal Kaçmaz, S. Linn, Annu. Rev. Biochem. 73, 39 (2004)CrossRefGoogle Scholar
  6. 6.
    P. Heelis, S.T. Kim, T. Okamura, A. Sancar, J. Photochem. Photobiol. B 17, 219 (1993)CrossRefGoogle Scholar
  7. 7.
    A. Sancar, Biochemistry 33, 2 (1994)CrossRefGoogle Scholar
  8. 8.
    Y.T. Kao, C. Saxena, L. Wang, A. Sancar, D. Zhong, Proc. Natl. Acad. Sci. 102, 16128 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    K. Brettel, M. Byrdin, Curr. Opin. Struct. Biol. 20, 693 (2010)CrossRefGoogle Scholar
  10. 10.
    T. Domratcheva, J. Am. Chem. Soc. 133, 18172 (2011)CrossRefGoogle Scholar
  11. 11.
    F. Cailliez, P. Müller, T. Firmino, P. Pernot, A. de la Lande, J. Am. Chem. Soc. 138, 1904 (2016)CrossRefGoogle Scholar
  12. 12.
    I.M.M. Wijaya, T. Domratcheva, T. Iwata, E.D. Getzoff, H. Kandori, J. Am. Chem. Soc. 138, 4368 (2016)CrossRefGoogle Scholar
  13. 13.
    F. Zhang, P. Scheerer, I. Oberpichler, T. Lamparter, N. Krauss, Proc. Natl. Acad. Sci. 110, 7217 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    A. von Zadow, E. Ignatz, R. Pokorny, L.O. Essen, G. Klug, FEBS J. 283, 4291 (2016)CrossRefGoogle Scholar
  15. 15.
    D.R. Kattnig, I.A. Solov’yov, P.J. Hore, Phys. Chem. Chem. Phys. 70, 12443 (2016)CrossRefGoogle Scholar
  16. 16.
    D.R. Kattnig, J.K. Sowa, I.A. Solov’yov, P.J. Hore, New J. Phys. 18, 063007 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    A. Möller, S. Sagasser, W. Wiltschko, B. Schierwater, Naturwissenschaften 91, 585 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    M. Liedvogel, H. Mouritsen, J. R. Soc. Interface 7, S147 (2010)CrossRefGoogle Scholar
  19. 19.
    G. Lüdemann, I.A. Solov’yov, T. Kubař, M. Elstner, J. Am. Chem. Soc. 137, 1147 (2015)CrossRefGoogle Scholar
  20. 20.
    I.A. Solov’yov, T. Domratcheva, K. Schulten, Sci. Rep. 4, 3845 (2014)CrossRefGoogle Scholar
  21. 21.
    I.A. Solov’yov, K. Schulten, J. Phys. Chem. B 116, 1089 (2012)CrossRefGoogle Scholar
  22. 22.
    I.A. Solov’yov, D.E. Chandler, K. Schulten, Biophys. J. 92, 2711 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    I. Solov’yov, K. Schulten, Biophys. J. 96, 4804 (2009)CrossRefGoogle Scholar
  24. 24.
    I.A. Solov’yov, T. Domratcheva, A.R. Moughal Shahi, K. Schulten, J. Am. Chem. Soc. 134, 18046 (2012)CrossRefGoogle Scholar
  25. 25.
    I.A. Solov’yov, T. Ritz, K. Schulten, P.J. Hore, Quantum Effects in Biology (Cambridge University Press, 2014), Chap. 10, pp. 218–236Google Scholar
  26. 26.
    J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26, 1781 (2005)CrossRefGoogle Scholar
  27. 27.
    A.D. MacKerell Jr., M. Feig, C.L. Brooks III, J. Comput. Chem. 25, 1400 (2004)CrossRefGoogle Scholar
  28. 28.
    A.D. MacKerell Jr., D. Bashford, M. Bellott, R.L. Dunbrack Jr., J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha et al., J. Phys. Chem. B 102, 3586 (1998)CrossRefGoogle Scholar
  29. 29.
    E. Sjulstok, J.M.H. Olsen, I.A. Solov’yov, Sci. Rep. 5, 18446 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)CrossRefGoogle Scholar
  31. 31.
    W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1983)ADSCrossRefGoogle Scholar
  32. 32.
    B. Zoltowski, A. Vaidya, D. Top, J. Widom, M. Young, B. Crane, Nature 480, 396 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    B. Zoltowski, A. Vaidya, D. Top, J. Widom, M. Young, B. Crane, Nature 496, 252 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98, 10089 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    S.E. Feller, Y.H. Zhang, R.W. Pastor, B.R. Brooks, J. Chem. Phys. 103, 4613 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    A.R. Moughal Shahi, T. Domratcheva, J. Chem. Theor. Comput. 9, 4644 (2013)CrossRefGoogle Scholar
  37. 37.
    K.W. Caldecott, Exp. Cell Res. 329, 2 (2014)CrossRefGoogle Scholar
  38. 38.
    E. Cotner-Gohara, I.K. Kim, M. Hammel, J.A. Tainer, A.E. Tomkinson, T. Ellenberger, Biochemistry 49, 6165 (2010)CrossRefGoogle Scholar
  39. 39.
    I.A. Solov’yov, A.V. Yakubovich, P.V. Nikolaev, I. Volkovets, A.V. Solov’yov, J. Comput. Chem. 33, 2412 (2012)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PhysicsChemistry and Pharmacy, University of Southern DenmarkOdense MDenmark

Personalised recommendations