Electron impact ionization cross section studies of C2Fx (x = 1 − 6) and C3Fx (x = 1 − 8) fluorocarbon species

  • Dhanoj Gupta
  • Heechol Choi
  • Mi-Young Song
  • Grzegorz P. Karwasz
  • Jung-Sik Yoon
Regular Article
Part of the following topical collections:
  1. Topical Issue: Atomic and Molecular Data and their Applications

Abstract

The total ionization cross section for C2Fx (x = 1 − 6) and C3Fx (x = 1 − 8) fluorocarbon species are studied with the Binary-Encounter Bethe (BEB) model using various orbital parameters calculated from restricted/unrestricted Hartree-Fock (RHF/UHF) and Density Functional Theory (DFT). All the targets were optimized for their minimal structures and energies with several ab-initio methods with the aug-cc-pVTZ basis set. Among them, the present results with RHF/UHF orbital energies showed good agreement with the experimental results for stable targets C2F6, C2F4, C3F6 and C3F8. The results with the DFT (ωB97X/ωB97X-D) showed a reasonable agreement with the recent calculation of Bull et al. [J.N. Bull, M. Bart, C. Vallance, P.W. Harland, Phys. Rev. A 88, 062710 (2013)] for C2F6, C3F6 and C3F8 targets. The ionization cross section for C2F, C2F2, C2F3, C3F, C3F2, C3F3, C3F4, C3F5 and C3F7 were computed for the first time in the present study. We have also computed the vertical ionization potentials and polarizability for all the targets and compared them with other experimental and theoretical values. A good agreement is found between the present and the previous results. The calculated polarizability in turn is used to study the correlation with maximum ionization cross section and in general a good correlation is found among them, confirming the consistency and reliability of the present data. The cross section data reported in this article are very important for plasma modeling especially related to fluorocarbon plasmas.

Graphical abstract

References

  1. 1.
    L.J. Keiffer, G.H. Dunn, Rev. Mod. Phys. 38, 1 (1966), and references. therein.ADSCrossRefGoogle Scholar
  2. 2.
    K.N. Dzhumagulova, E.O. Shalenov, G.L. Gabdullin, Phys. Plasmas 20, 042702 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    K.N. Dzhumagulova, E.O. Shalenov, T.S. Ramazanov, Phys. Plasmas 22, 082120 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    T.S. Ramazanov, K.N. Dzhumagulova, G.L. Gabdullin, Phys. Plasmas 17, 042703 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    C.-G. Kim, Y.-D. Jung, Phys. Plasmas 19, 014502 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    D.W. Flaherty, M.A. Kasper, J.E. Baio, D.B. Graves, H.F. Winters, C. Winstead, V. McKoy, J. Phys. D: Appl. Phys. 39, 4393 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    V. Tarnovsky, H. Deutsch, K. Becker, J. Phys. B: At. Mol. Opt. Phys. 32, L573 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Y.K. Kim, K.K. Irikura, AIP Conf. Proc. 543, 220 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    S.J. Moss, A. Ledwith, The chemistry of the semiconductor industry (Blackie, London, 1987)Google Scholar
  10. 10.
    S.J. Moss, A. Ledwith, P.L. Timms, J. Chem. Soc. Dalton Trans. 815, (1999)Google Scholar
  11. 11.
    J. Benedikt, J. Phys. D: Appl. Phys. 43, 043001 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    P. Verma, D. Mahato, J. Kaur, B. Antony, Phys. Plasmas 23, 093512 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    H. Nishimura, W.M. Huo, M.A. Ali, Y.-K. Kim, J. Chem. Phys. 110, 3811 (1999), and references thereinADSCrossRefGoogle Scholar
  14. 14.
    Y.-K. Kim, M.E. Rudd, Phys. Rev. A 50, 3954 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    W. Hwang, Y.-K. Kim, M.E. Rudd, J. Chem. Phys. 104, 2956 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    M. Bart, P.W. Harland, J.E. Hudson, C. Vallance, Phys. Chem. Chem. Phys. 3, 800 (2001)CrossRefGoogle Scholar
  17. 17.
    D. Margreiter, H. Deutsch, T.D. Märk, Contr. Plasma Phys. 30, 487 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    J.N. Bull, M. Bart, C. Vallance, P.W. Harland, Phys. Rev. A 88 062710 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    J.V. Ortiz, J. Chem. Phys. 104, 7599 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    J.N. Bull, P.W. Harland, C.J. Vallance, Phys. Chem. A 116, 767 (2012)CrossRefGoogle Scholar
  21. 21.
    J.A. Beran, L. Kevan, J. Phys. Chem. 73, 3866 (1969)CrossRefGoogle Scholar
  22. 22.
    R. Basner, M. Schmidt, E. Denisov, P. Lopata, K. Becker, H. Deutsch, Int. J. Mass Spectrom. 214, 365 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    M.V. Kurepa, 3rd Cz. Conference on Electronics and Vacuum Transactions (1965)Google Scholar
  24. 24.
    H.U. Poll, J. Meichsner, Contrib. Plasma Phys. 27, 359 (1987)Google Scholar
  25. 25.
    C.Q. Jiao, A. Garscadden, P.D. Haaland, Chem. Phys. Lett. 325, 203 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    H. Deutsch, K. Becker, R. Basner, M. Schmidt, T.D. Märk, J. Phys. Chem. 102, 8819 (1998)CrossRefGoogle Scholar
  27. 27.
    A. Jain, K.L. Baluja, Phys. Rev. A 45, 202 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    D. Gupta, B. Antony, J. Chem. Phys. 141, 054303 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    B.K. Antony, K.N. Joshipura, N.J. Mason, J. Phys. B: At. Mol. Opt. Phys. 38, 189 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    L.G. Christophorou, J.K. Olthoff, J. Phys. Chem. Ref. Data 27, 1 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    L.G. Christophorou, J.K. Olthoff, J. Phys. Chem. Ref. Data 27, 889 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    L.G. Christophorou, J.K. Olthoff, J. Phys. Chem. Ref. Data 30, 449 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    N.F. Mott, Proc. R. Soc. Lond. Ser. A 126, 259 (1930)ADSCrossRefGoogle Scholar
  34. 34.
    H.A. Bethe, Ann. Phys. 5, 325 (1930)CrossRefGoogle Scholar
  35. 35.
    Y.-K. Kim, W. Hwang, N.M. Weinberg, M.A. Ali, M.E. Rudd, J. Chem. Phys. 106, 1026 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    M.A. Ali, Y.-K. Kim, W. Hwang, N.M. Weinberg, M.E. Rudd, J. Chem. Phys. 106, 9602 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    Y.-K. Kim, M.A. Ali, M.E. Rudd, J. Res. Natl. Inst. Stand. Technol. 102 693 (1997)CrossRefGoogle Scholar
  38. 38.
    Y.-K. Kim, M.E. Rudd, Comments At. Mol. Phys. 34, 293 (1999)Google Scholar
  39. 39.
    J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008)CrossRefGoogle Scholar
  40. 40.
    J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)ADSCrossRefGoogle Scholar
  42. 42.
    C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    R. Kanakaraju, K. Senthilkumar, P. Kolandaivel, J. Mol. Struct. (Theochem.) 589/590, 95 (2002)CrossRefGoogle Scholar
  44. 44.
    M.J. Frisch et al., Gaussian 09, Revision D.01, Gaussian, Inc. Wallingford CT (2013)Google Scholar
  45. 45.
    G. Bieri, E. Heilbronner, J.-P. Stadelmann, J. Vogt, W.V. Niessen, J. Am. Chem. Soc. 99, 6832 (1977)CrossRefGoogle Scholar
  46. 46.
    S.G. Lias, J.E. Bartmess, J.F. Liebman, J.L. Holmes, R.D. Levin, W.G. Mallard, J. Phys. Chem. Ref. Data 17, Suppl. 1 (1988)Google Scholar
  47. 47.
    G. Bieri, W.V. Niessen, L. Asbrink, A. Svensson, Chem. Phys. 60, 61 (1981)ADSCrossRefGoogle Scholar
  48. 48.
    I.P. Fisher, J.B. Homer, F.P. Lossing, J. Am. Chem. Soc. 87, 957 (1965)CrossRefGoogle Scholar
  49. 49.
    M.G. Inghram, G.R. Hanson, R. Stockbauer, Int. J. Mass Spectrom. Ion Phys. 33, 253 (1980)ADSCrossRefGoogle Scholar
  50. 50.
    R.K. Thomas, H. Thompson, Proc. R. Soc. London A 339, 29 (1974)ADSCrossRefGoogle Scholar
  51. 51.
    N.D. Kagramanov, K. Ujszaszy, J. Tamas, A.K. Maltsev, O.M. Nefedov, Bull. Acad. Sci. USSR, Div. Chem. Sci. 7, 1531 (1983)CrossRefGoogle Scholar
  52. 52.
    D.W. Berman, D.S. Bomes, J.L. Beauchamp, Int. J. Mass Spectrom. Ion Phys. 39, 263 (1981)ADSCrossRefGoogle Scholar
  53. 53.
    M.J.S. Dewar, S.D. Worley, J. Chem. Phys. 50, 654 (1969)ADSCrossRefGoogle Scholar
  54. 54.
    W. Wang, Y. Wu, M.Z. Rong, L. Éhn, I. Èernušak, J. Phys. D: Appl. Phys. 45, 285201 (2012)CrossRefGoogle Scholar
  55. 55.
    L. Éhn, I. Èernšáuk, P. Neogrády, Croat. Chem. Acta 82, 253 (2009)Google Scholar
  56. 56.
    F.W. Lampe, J.L. Franklin, F.H. Field, J. Am. Chem. Soc. 79, 6129 (1957)CrossRefGoogle Scholar
  57. 57.
    P.W. Harland, C. Vallance, Int. J. Mass Spectrom. Ion Proc. 171, 173 (1997)ADSCrossRefGoogle Scholar
  58. 58.
    J.E. Hudson, Ze F. Weng, C. Vallance, P.W. Harland, Int. J. Mass. Spectrom. 248, 42 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    D. Gupta, R. Naghma, B. Antony, Can. J. Phys. 91, 744 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    J. Kaur, D. Gupta, R. Naghma, D. Ghoshal, B. Antony, Can. J. Phys. 93, 617 (2015)ADSCrossRefGoogle Scholar
  61. 61.
    D. Gupta, R. Naghma, B. Antony, Mol. Phys. 112, 1201 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    G.P. Karwasz, P. Możejko, Mi-Young Song, Int. J. Mass Spectrom. 365/366, 232 (2014)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Dhanoj Gupta
    • 1
  • Heechol Choi
    • 1
  • Mi-Young Song
    • 1
  • Grzegorz P. Karwasz
    • 2
  • Jung-Sik Yoon
    • 1
  1. 1.Plasma Technology Research Center, National Fusion Research InstituteJeollabuk-doSouth Korea
  2. 2.Institute of Physics, University Nicolaus CopernicusToruñPoland

Personalised recommendations