Quantifying geometric measure of entanglement by mean value of spin and spin correlations with application to physical systems

  • Andrzej M. Frydryszak
  • Mykola I. Samar
  • Volodymyr M. Tkachuk
Regular Article


We quantify the geometric measure of entanglement in terms of mean values of observables of entangled system. For pure states we find the relation of geometric measure of entanglement with the mean value of spin one-half for the system composed of spin and arbitrary quantum system. The geometric measure of entanglement for mixed states of rank-2 spanned by vectors |↑↓⟩, |↓↑⟩ or |↑↑⟩, |↓↓⟩ is studied as well. The result are generalized for corresponding rank-2 mixed states of arbitrary N spin system. We find the explicit expression for geometric entanglement and the relation of entanglement in this case with the values of spin correlations. These results allow to find experimentally the value of entanglement by measuring a value of the mean spin and the spin correlations for pure and mixed states, respectively. The obtained results are applied for calculation of entanglement during the evolution in spin chain with Ising interaction, two-spin Ising model in transverse fluctuating magnetic field, Schrödinger cat in fluctuating magnetic field.

Graphical abstract


Quantum Information 


  1. 1.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    M.B. Plenio, S. Virmani, Quantum Inf. Comp. 7, 1 (2007)Google Scholar
  3. 3.
    A. Shimony, Ann. N.Y. Acad. Sci. 755, 675 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    D.C. Brody, L.P. Hughston, J. Geom. Phys. 38, 19 (2001)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    T.C. Wei, P.M. Goldbart, Phys. Rev. A 68, 042307 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    L. Chen, M. Aulbach, M. Hajdušek, Phys. Rev. A 89, 042305 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    O. Guhne, P. Hyllus, D. Bruss, A. Ekert et al., Phys. Rev. A 66, 062305 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    J.B. Altepeter, E.R. Jeffrey, P.G. Kwiat, S. Tanzilli, N. Gisin, A. Acín, Phys. Rev. Lett. 95, 033601 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Ch. Kothe, G. Björk, Phys. Rev. A 75, 012336 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    S.P. Walborn, P.H. Souto Ribeiro, L. Davidovich, F. Mintert, A. Buchleitner, Phys. Rev. A 75, 032338 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    S.J. van Enk, N. Lütkenhaus, H.J. Kimble, Phys. Rev. A 75, 052318 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    S.-M. Fei, M.-J. Zhao, K. Chen, Z.-X. Wang, Phys. Rev. A 80, 032320 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    G. Brida, I.P. Degiovanni, A. Florio et al., Phys. Rev. Lett. 104, 100501 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    T. Lawson, A. Pappa, B. Bourdoncle et al., Phys. Rev. A 90, 042336 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    J. Dai, Y.L. Len, Y.S. Teo, B.-G. Englert, L.A. Krivitsky, Phys. Rev. Lett. 113, 170402 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    K. Bartkiewicz, J. Beran, K. Lemr, M. Norek, A. Miranowicz, Phys. Rev. A 91, 022323 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    M. Boyer, R. Liss, T. Mor, On the Geometry of Entanglement, arXiv:1608.00994
  18. 18.
    A. Sen(De), U. Sen, Phys. Rev. A 81, 012308 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Andrzej M. Frydryszak
    • 1
  • Mykola I. Samar
    • 2
  • Volodymyr M. Tkachuk
    • 2
  1. 1.Institute of Theoretical Physics, University of WroclawWroclawPoland
  2. 2.Department for Theoretical Physics, Ivan Franko National University of LvivLvivUkraine

Personalised recommendations